Programmazione Didattica

Corso di Calcolo Numerico

Ingegneria Aerospaziale, Meccanica ed Energetica, settore scientifico disciplinare MAT/08 n. ore di attività didattica 48 CFU 6 docente: Dr.ssa Pasqua D'Ambra

Obiettivi Formativi

Introduzione all'uso di metodologie e strumenti per l'analisi e l'implementazione su moderni calcolatori di alcuni metodi ed algoritmi numerici per applicazioni tecnico-scientifiche. Utilizzo del sistema MATLAB per la realizzazione e l'uso di programmi Matlab che implementano gli algoritmi sviluppati.

Contenuti

Introduzione al Calcolo Numerico. Sistemi aritmetici ed errori di round off. Il sistema interattivo Matlab quale ambiente di lavoro e strumento di programmazione. Algebra lineare numerica. Il fitting di dati. Risoluzione di equazioni non lineari.

1. Introduzione al Calcolo Numerico

Risoluzione di un problema tramite computer ed errori connessi. Sistemi aritmetici: intero e floating point. Sistema aritmetico standard IEEE. Errore di round off, epsilon macchina. Condizionamento di un problema e stabilità di un algoritmo. La complessità di tempo e di spazio. Il software matematico.

2. Il sistema interattivo MATLAB

Il sistema MATLAB: tipi di dati e operatori. Il linguaggio MATLAB e le principali funzioni di utilità. Programmare in MATLAB: script files e function files. La grafica in MATLAB.

3. Algebra Lineare Numerica

Condizionamento di un sistema lineare. Risoluzione di un sistema lineare. Sistemi triangolari: algoritmi di back e forward substitution. Algoritmo di Gauss e strategia del pivoting parziale. Fattorizzazione LU con pivoting parziale . Funzioni MATLAB: det, cond, inv, lu. Sistemi lineari sparsi e introduzione ai metodi iterativi stazionari (metodi di Jacobi e Gauss-Siedel), condizioni sufficienti di convergenza. Criteri di arresto e complessità di calcolo. Uso di strutture dati per matrici sparse e generazione di matrici sparse in Matlab. Funzioni Matlab: sparse, spdiags, find

4. Fitting di dati

Interpolazione di dati discreti. Interpolazione polinomiale di Lagrange. Interpolazione polinomiale a tratti. Introduzione alle funzioni spline. Funzioni MATLAB: polyfit, polyval, interp1, spline.

5. Risoluzione di Equazioni non Lineari

Metodo di Bisezione, Metodo delle secanti, Metodo di Newton. Funzione

Matlab: fzero.

Esercizi in Matlab

Ai fini del superamento dell'esame finale è necessario realizzare progetti di sviluppo di programmi Matlab sui temi trattati, le cui specifiche saranno fornite agli studenti durante il corso.

Bibliografia:

- A. Murli, *Matematica Numerica, metodi, algoritmi e software. Parte prima.* Liguori ed., 2007.
- B. A. Quarteroni, F. Saleri, *Calcolo Scientifico, Esercizi e problemi risolti con MATLAB e Octave*, Springer IV ed., 2008.
- C. M. Redivo Zaglia, *Calcolo Numerico. Metodi ed Algoritmi. ed. 4*, Edizioni Libreria Progetto, 2015.