
A FLUID-DYNAMIC MODEL AT THE JUNCTIONS

1. Basic definitions for road networks

For the notions about the model given in the sequel we refer to the
paper by Coclite-Piccoli-Garavello [2].
Different types of mathematical models are used for the simulation
of vehicular traffic. They can be roughly classified in microscopic,
mesoscopic and macroscopic. The basic models are the car following or
microscopic models based on Newton’s law. The macroscopic models
seem to properly treat some phenomena such as shocks creation and
propagation. Here we propose a fluid-dynamic model for traffic flow on
a road network, which can be applied to the case of crossings with lights
and circles. We consider the conservation law formulation proposed by
Lighthill-Whitham and Richards. More precisely, one considers the
conservation of cars described by the equation

(1.1) ∂tρ+ ∂xf(ρ) = 0,

where ρ = ρ(x, t) is the density of cars, with ρ ∈ [0, ρmax], (x, t) ∈ R
2

and ρmax is the maximum density of cars on the road; f(ρ) is the flux,
which can be written f(ρ) = ρv(ρ), with v(x, t) the velocity. Tipically
v is assumed to be a smooth decreasing function of ρ.
Here we are interested in a road network. This means that we have
a finite number of roads modelled by intervals [ai, bi] (with one of
the endpoints eventually infinite) that meet at the some junctions.
We give boundary data and solve the associated boundary problem
for the endpoints (not infinite) that do not meet at any junction.
Junctions play a fundamental role, as the system at a junction is
underdetermined, even after prescribing the conservation of cars. The
Rankine-Hugoniot at a junction reads:

n∑

i=1

f(ρi(t, bi)) =

n+m∑

j=n+1

f(ρj(t, aj)),

where ρi, i = 1, . . . , n, are the car densities on incoming roads; ρj,
j = n+ 1, . . . , n+m, are the car densities on the outgoing roads.
To determine a unique solution to Riemann problems at junctions,
assume the following criteria:

(A): there are some fixed coefficients, the prescribed preferences
of drivers, that express the distribution of traffic from incoming
to outgoing roads;
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2 A FLUID-DYNAMIC MODEL AT THE JUNCTIONS

(B): respecting (A), drivers choices are made in order to
maximize the flux.

Let us consider the rule (A). We fix a matrix, called traffic
distribution matrix:

A = {αji}j=n+1,...,n+m,i=1,...,n ∈ Rm×n ,

such that

(1.2) 0 < αji < 1,
n+m∑

j=n+1

αji = 1,

for i = 1, . . . , n and j = n+1, . . . , n+m, where αji is the percentage of
drivers arriving from the i-th incoming road that take the j-th outgoing
road.

Remark 1.1 Note that the only the rule (A) is not sufficient to have a
unique solution to Riemann problems, that are still under-determined.

Under suitable assumptions on A and rules (A)-(B), representing a
situation where drivers have a final destination and maximize the flux
whenever is possible, Riemann problems can be uniquely solved. In
[2] it has been proved existence of each solution to Cauchy problems
respecting rules (A) and (B).

It is possible to introduce time dependent coefficients for the rule
(A), and in particular traffic lights are modeled to deal by periodic
coefficients. In the same way, we can treat networks assigning a
different flux function fi on each road Ii.

Let us first recall the basic definitions and results from [2]. The
parametrization of roads composing a network is made through a set
of intervals Ii = [ai, bi] ⊂ R, i ∈ 1, . . . , N , with the endpoints possibly
infinite. The datum is a finite collection of densities ρi defined on
Ii × [0,+∞).
ρi is a weak entropy solution on road Ii, if for every ϕ : Ii → R smooth
and with compact support on (ai, bi) × (0,+∞) one has

(1.3)

∫ bi

ai

∫ +∞

0

(
ρi
∂ϕ

∂t
+ f(ρi)

∂ϕ

∂x

)
dx dt = 0

and for every k ∈ R and ϕ̃ : Ii → R smooth, positive with compact
support on (ai, bi) × (0,+∞)
(1.4)∫ bi

ai

∫ +∞

0

(
|ρi − k|

∂ϕ̃

∂t
+ sgn(ρi − k)(f(ρi) − f(k))

∂ϕ̃

∂x

)
dx dt ≥ 0

For equation (1.1) on R it is well-known that there exists a unique
weak entropy solution for every initial data belonging to L∞, with a
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continuous dependence on the initial data in L1
loc. Roads are linked

to each other by some junctions, with the assumption that each road
can be incoming at most for one junction and outgoing at most for one
junction. Consequently the complete model is given by a pair (I,J ),
with I = {Ii : i = 1, . . . , N} the collection of roads and J the number
of junctions.
Consider a junction J with n incoming roads, say I1, . . . , In, and m
outgoing roads, say In+1, . . . , In+m. A weak solution at the junction J
is a collection of functions ρl : [0,+∞[×Il → R, l = 1, . . . , n+m, such
that

(1.5)

n+m∑

l=0

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl

∂t
+ f(ρl)

∂ϕl

∂x

)
dx dt

)
= 0,

for every ϕl, l = 1, . . . , n + m, smooth having compact support in
(0,+∞) × (al, bl] for l = 1, . . . , n (incoming roads) and in (0,+∞) ×
[al, bl) for l = n + 1, . . . , n +m (outgoing roads), that are also smooth
across the junction, i.e.

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, ..., n, j = n+1, ..., n+m.

Remark 1.2 Let ρ = (ρ1, . . . , ρn+m) be a weak solution at the junction
such that each x→ ρi(t, x) has bounded variation. We can deduce that
ρ satisfies the Rankine-Hugoniot Condition at the junction J , namely

(1.6)

n∑

i=1

f(ρi(t, bi−)) =

n+m∑

j=n+1

f(ρj(t, aj+)),

for almost every t > 0.

The rules (A) and (B) can be given explicitly only for solutions with
bounded variation as in the next definition.

Definition 1.3 Let ρ = (ρ1, . . . , ρn+m) be such that ρi(x, t) is of
bounded variation for every t ≥ 0. Then ρ is an admissible weak
solution of (1.1) associated to the matrix A, satisfying (1.2), at the
junction J the following properties hold:

(i) ρ is a weak solution at the junction;
(ii) f(ρj(·, a

+
j )) =

∑n
i=1 αjif(ρi(·, b

+
i )), for j = n+ 1, . . . , n+m;

(iii) f(ρi(·, b
−

i )) +
∑n+m

j=n+1 f(ρj(·, a
+
j )), is maximum subject to (ii).

A boundary data ψi : [0,+∞] → R is assigned in the following cases:
for each road Ii = [ai, bi], if ai > −∞ and Ii is not the outgoing road
of any junction, or if bi < +∞ and Ii is not the incoming road of any
junction. If boundary data is given, we need φi to verify ρi(t, ai) = ψi(t)
or ρi(t, bi) = ψi(t) in the sense of [1].
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Figure 1. junction.

Definition 1.4 Given ρ̄i : Ii → R and possibly ψi : [0,+∞[→ R,
functions of L∞, a collection of functions ρ = (ρ1, . . . , ρN) with
ρi : [0,+∞[×Ii → R continuous as functions from [0,+∞[ into L1

loc,
is an admissible solution if ρi is a weak entropic solution to (1.1) on
Ii, ρi(0, x) = ρ̄i(x) a.e., ρi(t, bi) = ψi(t) in the sense of [1], finally such
that at each junction ρ is a weak solution and is an admissible weak
solution in case of bounded variation.

We recall the construction of solutions to the Riemann problems for
rules (A) and (B). A Riemann problem for a scalar conservation law is a
Cauchy problem for an initial data of Heaviside type, that is piecewise
constant with only one discontinuity. Once Riemann problems are
solved, a solution to Cauchy problems can be obtained, for instance, by
wave front tracking. In case of concave or convex fluxes, the Riemann
solutions are of two types: continuous waves called rarefactions and
travelling discontinuity called shocks. The speed of the waves is related
to f ′(ρ).
For a junction, as for a scalar conservation law, a Riemann problem is
a Cauchy problem with an initial data that is constant on each road.
Let us make the subsequent assumptions on the flux:

(F) f : [0, 1] → R is smooth, strictly concave (i.e. f ′′ ≤ −c < 0
for some c > 0), f(0) = f(1) = 0, |f ′(x)| ≤ C < +∞. Hence
there exists a unique σ ∈]0, 1[ such that f ′(σ) = 0 (that is σ is
a strict maximum).

Consider a junction J with n incoming roads and m outgoing roads.
The densities of the cars on the incoming roads are indicated by:

(x, t) ∈ R
+ × Ii 7→ ρi(x, t) ∈ [0, 1], i ∈ {1, . . . , n}

and those on the outgoing roads:

(x, t) ∈ R
+ × Ij 7→ ρj(x, t) ∈ [0, 1], j ∈ {1, . . . , m}.

We introduce the following application:
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Definition 1.5 Let τ : [0, 1] 7→ [0, 1], τ(σ) = σ, be the map satisfying
the following

τ(ρ) 6= ρ, f(τ(ρ)) = f(ρ),

for each ρ 6= σ.
Evidently τ is well-defined and it verifies

0 ≤ ρ ≤ σ ⇐⇒ σ ≤ τ(ρ) ≤ 1, σ ≤ ρ ≤ 1 ⇐⇒ 0 ≤ τ(ρ) ≤ σ.

In order to ensure uniqueness of the solution to Riemann problems
we need some generic additional conditions on the matrix A. Let
{e1, . . . , en} be the canonical basis of R

n and for every subset V ⊂
R

n, indicate by V ⊥ its orthogonal. For every i = 1, . . . , n, let us
define Hi the coordinate hyperplane orthogonal to ei and for every
j = n + 1, . . . , n + m define Hj = αj

⊥, with αj = (αj1, . . . , αjn).
Indicate by K the set of indices k = (k1, . . . , kl), 1 ≤ l ≤ n − 1, such
that 0 ≤ k1 < k2 < · · · < kl ≤ n+m and for every k ∈ K we set

Hk =
l⋂

h=1

Hkh
.

Letting 1 = (1, . . . , 1) ∈ R
n, we assume

(RP ) for every k ∈ K, 1 /∈ H⊥
k
.

From (RP ) easily follows m ≥ n, for details see [2].

The existence and uniqueness of admissible solutions for the Riemann
problem of a junction is expressed by the following theorem.

Theorem 1.6 Let f : [0, 1] → R satisfy (F), the matrix A satisfy
(C) and ρ1,0, . . . , ρn+m,0 ∈ [0, 1] be constants. There exists a unique
admissible weak solution, in the sense of Definition 1.3, namely ρ =
(ρ1, . . . , ρn+m) of (1.1) at the junction J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρn+m(0, ·) ≡ ρn+m,0

Moreover, there exists a unique (n + m)–uple (ρ̂1, . . . , ρ̂n+m) ∈
[0, 1]n+m, such that

(1.7) ρ̂i ∈






{ρi,0} ∪ (τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
i = 1, . . . , n

[σ, 1] if σ ≤ ρi,0 ≤ 1,

and,
(1.8)

ρ̂j ∈





[0, σ] if 0 ≤ ρj,0 ≤ σ,
j = n+ 1, . . . , n+m.

{ρj,0} ∪ [0, τ(ρj,0)) if σ ≤ ρj,0 ≤ 1.
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Fixed i ∈ {1, . . . , n}, if ρi,0 ≤ ρ̂i the solution is a shock:

(1.9) ρi(x, t) =





ρi0 if x ≤
f(ρ̂i)−f(ρi,0)

ρ̂i−ρi,0
t,

ρ̂i otherwise,

and if ρi,0 > ρ̂i the solution is a rarefaction:

(1.10) ρi(x, t) =





ρi0 if x ≤ f ′(ρi,0)t,
(f ′)−1

(
x
t

)
f ′(ρi,0)t ≤ x ≤ f ′(ρ̂i)t,

ρ̂i if x > f ′(ρ̂i)t.

Proof. Define the map

E : (γ1, ..., γn) ∈ R
n 7−→

n∑

i=1

γi

and the sets

Ωi
.
=

{
[0, f(ρi,0)], if 0 ≤ ρi,0 ≤ σ,
[0, f(σ)], if σ ≤ ρi,0 ≤ 1,

i = 1, ..., n,

Ωj
.
=

{
[0, f(σ)], if 0 ≤ ρj,0 ≤ σ,
[0, f(ρj,0)], if σ ≤ ρj,0 ≤ 1,

j = n+ 1, ..., n+m,

Ω
.
=
{

(γ1, ..., γn) ∈ Ω1× . . .×Ωn

∣∣A · (γ1, ..., γn)
T ∈ Ωn+1× . . .×Ωn+m

}
.

The set Ω is closed, convex and not empty. Furthermore, by (RP), ∇E
is not orthogonal to any nontrivial subspace contained in a supporting
hyperplane of Ω, therefore there exists a unique vector (γ̂1, ..., γ̂n) ∈ Ω
such that

E(γ̂1, ..., γ̂n) = max
(γ1,...,γn)∈Ω

E(γ1, ..., γn).

For every i ∈ {1, ..., n}, we choose ρ̂i ∈ [0, 1] such that

(1.11) f(ρ̂i) = γ̂i, ρ̂i ∈

{
{ρi,0}∪]τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,
[σ, 1], if σ ≤ ρi,0 ≤ 1.

By (F ), ρ̂i exists and is unique. Let

γ̂j
.
=

n∑

i=1

αjiγ̂i, j = n+ 1, ..., n+m,

and ρ̂j ∈ [0, 1] be such that

(1.12) f(ρ̂j) = γ̂j, ρ̂j ∈

{
[0, σ], if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[, if σ ≤ ρj,0 ≤ 1.

Since (γ̂1, ..., γ̂n) ∈ Ω, ρ̂j exists and is unique for every j ∈ {n +
1, . . . , n +m}. The thesis is achieved.

The solution on each road is given by the solution to Riemann problem
with data (ρi0, ρ̂i) for incoming roads and (ρ̂j, ρj0) for outgoing roads.
Once the solution to Riemann problems is obtained, one can use a wave
front tracking algorithm to build a sequence of approximate solutions.
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Remark 1.7 In order to have admissible solutions to Riemann
problems, we need that (ρi0, ρ̂i) is solved by waves with negative speed,
while (ρ̂j, ρj0) is solved by waves with positive speed. This is equivalent
to conditions (1.7) and (1.8).

2. Existence of solutions.

Once the solution of Riemann problems at junctions is obtained,
using that the speed of propagation is finite, one constructs solutions
via wave-front tracking algorithm.
Now we are assuming to have junctions composed by two incoming
and two outgoing roads. We are able to give an estimate of the total
variation of the flux along an approximate wave front tracking solution.

Lemma 2.1 Consider a road network (I,J ). For some K > 0 we
have the estimate on the flux variation

Tot.V ar.(f(ρ(t, ·))) ≤ eKtTot.V ar.(f(ρ(0+, ·)))

≤ eKtTot.V ar.(f(ρ(0, ·))) + 2Rf(σ)

for each t ≥ 0, with R the total number of roads of the network.

Now we can state the existence result for the approximate solution.

Theorem 2.2 Fix a road network (I,J ). Given C > 0 and T > 0,
there exists an admissible solution defined on [0, T ] for every initial
data ρ̄ ∈ cl{ρ : TV (ρ) ≤ C}, where cl is the closure in L1

loc.

For the proof of these results see again [2].
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2.1. Examples.

Example 2.3 (2 incoming - 2 outgoing roads)
Here we consider the particular case of a junction with two outgoing

J

ρ2,0

2

ρ3,0

4

3

ρ1,0

1 ρ4,0

Figure 2. A junction with two incoming and two
outgoing roads.

and two incoming roads. The incoming roads are indicated as 1 e 2,
while the outgoing roads are 3 and 4.
In order to determine the region for the maximization of the flux, we
impose a restriction on the initial data. For roads i = 1, 2 the maximum
flux reads:

fmax
i =





f(σ) if ρi,0 ∈ [σ, ρmax],

f(ρi,0) if ρi,0 ∈ [0, σ),

while for roads j = 3, 4 the maximum flux is:

fmax
j =






f(σ) if ρj,0 ∈ [0, σ],

f(ρj,0) if ρj,0 ∈ (σ, ρmax].

We obtain the two sets:

Ω12 = [0, f(ρ̄10)] × [0, f(ρ̄20)],

Ω34 = [0, f(ρ̄30)] × [0, f(ρ̄40)],

and maximize the sum of fluxes on the region Ω12 ∩ A−1(Ω34).
Introducing the notation γl = f(ρ̄l,0), l = 1, 2, 3, 4, we have

max(γ1 + γ2) = γ̂1 + γ̂2

and obtain γ̂3 and γ̂4, through the following relation

(2.1) Aγ̂ ∈ Ω34,

where the traffic distribution matrix reads

A =

(
α31 α32

α41 α42

)
.

The solution is:
(γ̂1, γ̂2, γ̂3, γ̂4)

and the corresponding ρ̂l are given by the inversion of:

f(ρ̂l) = γ̂l, l = 1, . . . , 4.
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γ1

γ2

P

γ4 = α41γ1 + α42γ2

γ3 = α31γ1 + α32γ2

Figure 3. Maximization region.

Remark 2.4 We deduce that in order to treat the case m < n it is
necessary to introduce a further rule.

Example 2.5 (2 incoming - 1 outgoing roads)
In particular, let us consider the casem = 1, n = 2. The two coefficients
α31 and α32 must be equal to one. This is a fundamental mathematical
issue, due to the fact that if not all cars can go through the junction,
then there should be a yielding rule between incoming roads. To deal
with this case we fix a new right of way parameter q ∈]0, 1[ and assign
the rule:

(C): Assume that not all cars can enter the outgoing road and
let C be the quantity that can do it. Then qC cars come from
first incoming road and (1 − q)C cars from the second.

The rule (C) allows to uniquely solve Riemann’s problems.
In order to show how rule (C) works, let us consider a junction like

the one showed in Fig. 4.

J

1

2

ρ3,0
3

ρ2,0

ρ1,0

Figure 4. A junction with two incoming and one
outgoing roads.
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As explained before, condition (RP) on A cannot hold for crossings
with two incoming and one outgoing roads. Then we introduce a further
parameter, whose meaning is the following. When the number of cars
is too big to let all of them go through crossing, there is a yielding rule
that describes the percentage of cars, going through the crossing, that
comes from the first road.

Let us fix a crossing with two incoming roads [ai, bi], i = 1, 2, and
one outgoing road [a3, b3] and assume that a right of way parameter
q ∈]0, 1[ is given. The solution to the Riemann’s problem (ρ1,0, ρ2,0, ρ3,0)
is composed by a single wave on each road connecting the initial states
to (ρ̂1, ρ̂2, ρ̂3) determined as follows (cfr. with the solution to the
Riemann’s problem in the two incoming two outgoing roads). Define
γmax

i , i = 1, 2 and γmax
3 in the subsequent way:

γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, σ],
f(σ) if ρi,0 ∈]σ, 1],

and

γmax
3 =

{
f(σ) if ρ3,0 ∈ [0, σ],
f(ρ3,0) if ρ3,0 ∈]σ, 1].

The quantities γmax
i represent the maximum flux that can be reached

by a single wave solution on each road. Since our goal is to maximize
going through traffic, we set:

(2.2) γ̂3 = min{γmax
1 + γmax

2 , γmax
3 }.

Consider the space (γ1, γ2), then rule (C) is respected by points on the
line:

(2.3) γ2 =
1 − q

q
γ1.

Thus define P to be the point of intersection of the line (2.3) with the
line γ1 + γ2 = γ̂3. Recall that the final fluxes should belong to the
region:

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i },

then we distinguish three cases:

a) P is inside Ω,
b) P is outside Ω,
c) P is the upper-right vertex of Ω (that corresponds to the case
γ̂3 = γmax

1 + γmax
2 ).

In the first case we set (γ̂1, γ̂2) = P , while in the second we set (γ̂1, γ̂2) =
Q, where Q is the point of the segment Ω ∩ {(γ1, γ2) : γ1 + γ2 = γ̂3}
closest to the line (2.3). We show in Figure 5 the cases a)-b). In the
third case, there is no need of using rule (C) and (γ̂1, γ̂2) = P , see
Figure 6.

Then we determine ρ̂i with the same rules of (1.7)-(1.8). The
obtained solution is called the correct solution corresponding to
parameter q.
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γ   =            γ
2

(1−q)

q 1
γ   =            γ

2

(1−q)

q 1

γ   +   γ   =  γ    
1 2 3

γ   +   γ   =  γ    
1 2 3

P

Q

P

case  a) case  b)

Figure 5. Solutions to Riemann’s problem for rule (C).

P

γ1 + γ2 = γ̂3

case c)

Figure 6. Solutions to Riemann’s problem without
using rule (C).
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Example 2.6 (Bottleneck)
The simplest application of the fluid-dynamic model presented in this
Chapter is represented by the bottleneck, which is an example of a road
with different fluxes.
In order to describe a bottleneck, it is necessary to consider two
different flux functions along the road, where the conservation of cars is
always expressed by (1.1) endowed with initial and boundary condition.
For a bottleneck, in fact, we mean a road with different widths: in the
first part of the street the flux reads

(2.4) f1(ρ) = ρ(1 − ρ), ρ ∈ [0, 1],

while, in the narrowest part of the street, the flux considered is

(2.5) f2(ρ) = ρ

(
1 −

3

2
ρ

)
, ρ ∈ [0, 2/3].

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 σ2 σ1
2
3 1

F (ρ)

ρ

f1

f2

b
b
b
b
b
b
b
b
bb
bb
bb
bb
bb
bb
bb
bbb

bbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbb

bb
b
b
b
b
b
b
b
b

Figure 7. The flux functions f1(ρ) and f2(ρ).

As before, the maximum for the fluxes is unique:

(2.6) f1(σ1) = max
[0,1]

f1(ρ) =
1

4
, with σ1 =

1

2
,

(2.7) f2(σ2) = max
[0,2/3]

f2(ρ) =
1

6
, with σ2 =

1

3
.

A key role is played by the separation point between the two parts of
the road, namely B. Indicate by ρs the point placed on the left respect
to B (that belongs to the widest part of the street) and by ρd the point
of the narrowest part on the right respect to B so that we can consider
the road as composed by two different roads. The maximization of f1

and f2 is performed following the rules, respectively

fmax
1 (ρ) =

{
f1(ρs) if ρs ≤ σ1,
f1(σ1) if ρs ≥ 1,
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ρs ρd

f1 f2

Figure 8. Interface at the bottleneck.

fmax
2 (u) =

{
f2(σ2) if ρd ≤ σ2,
f2(ρd) if ρd ≥ 2

3

and the intersection point between the two intervals is obtained taking
the minimum

(2.8) γ = min{fmax
1 (ρs), f

max
2 (ρd)},

with ρs and ρd instantaneously fixed. As the maximum density allowed
in the second part is given by σ2 = 1

6
, the creation of queues occurs

when the density on the first road verifies

(2.9) ρ(1 − ρ) =
1

6
⇐⇒ ρ̄ =

1 −
√

1
3

2
' 0.21 .

Then, when ρ1,b < ρ̄ (recall that ρ1,b is the car density entering the
largest road) there is no formation of shocks propagating backwards.

3. Traffic circles

Here we introduce the following traffic regulation problem: given
a junction with some incoming roads and some outgoing ones, is it
preferable to regulate the flux via a traffic light or via a traffic circle
on which the incoming traffic enters continuously? More precisely,
assuming that drivers arriving at the junction distribute on the
outgoing roads according to some known coefficients our purpose is
to understand which solution performs better from the point of view
of total amount of cars going through the junction.
In order to treat this problem we need a model that describes the above
situation and provides an accurate analysis. To this aim we consider
the fluid dynamic model based on (1.1) and proposed in [2] adapted in
a suitable way in order to treat the case of traffic circles.

3.1. Solutions for traffic circles. Recall the rule (C) introduced in
Section 1. ρ̂i is determined with the same rules of (1.11)-(1.12) and
the resulting solution is named the correct solution corresponding to
parameter q.
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1 2

1R 2R

3R4R

3

4

Figure 9. Traffic circle.

Consider a general network, as the traffic circle, with junctions having
either one incoming and two outgoing or two incoming and one outgoing
roads. Once the solution to Riemann’s problems is fixed then we can
introduce the definition of admissible solutions as in Definition 1.4.
More precisely, given a set of parameters qk for all junctions Jk with
two incoming and one outgoing roads, a solution ρ on the road network
is admissible if for a.e. t with ρ(t) of bounded variation the Riemann’s
problem at each junction Jk is solved in the correct way corresponding
to the parameter qk. With the same techniques of [3] one can construct
admissible solutions.

In an entirely similar way we treat the case of coefficients αij and
right of way parameters qk depending on time and having a finite
number of discontinuities.
Notice that we only treat the case of the single-lane traffic circles. A
model for the multi-lane traffic circles is proposed in [3].

3.1.1. Low traffic. Consider a simple network representing a traffic
circle with a low traffic rate, in the sense that the number of cars
reaching the circle is less then the capacity of the circle itself. There
are four roads, named 1, . . . , 4, the first two incoming in the circle and
the other two outgoing. In addition there are four roads 1R, . . . , 4R
that form the circle as in Figure 9.

As before the parameterization of roads is given by [ai, bi], i =
1, . . . , 4, and [aiR, biR], i = 1, . . . , 4. We assign a traffic distribution
matrix A describing how traffic coming from roads 1, 2 distributes
through roads 3 and 4, passing by the intermediate roads of the circle.
Two parameters are fixed, namely α, β ∈]0, 1[, such that



A FLUID-DYNAMIC MODEL AT THE JUNCTIONS 15

ρ
_

1
f(      ) ρ

_
2

f(      )

ρ
_

1
f(      ) ρ

_
2

f(      )

ρ
_

2
f(      ) ρ

_
1

f(      )

ρ
_

1
f(      )

ρ
_

2
f(      )

ρ
_

2
f(      ) ρ

_
1

f(      )β + (1−α)

ρ
_

1
f(      ) ρ

_
2

f(      )α + (1−β)

+ (1−β)

+ (1−α)

(1−α)

(1−β)

Figure 10. equilibrium for traffic circle

(C1) If M cars reach the circle from road 1, then αM drive to road
3 and (1 − α)M drive to road 4,

(C2) If M cars reach the circle from road 2, then βM drive to road
4 and (1 − β)M drive to road 3.

First we consider a static situation. We impose boundary conditions
as follows

(3.1) ρ1(a1, t) ≡ ρ̄1, ρ2(a2, t) ≡ ρ̄2,

with ρ̄1 and ρ̄2 constant fluxes from roads 1 and 2 respectively. Provided
that roads 3 and 4 can absorb all incoming traffic, e.g. if

(3.2) f(ρ̄1) + f(ρ̄2) ≤ F (σ),

the situation of Figure 10 should be achieved. In particular, this
happens with the following coefficients for the crossing (1R,3,2R)
(3.3)

α1R,3 =
αf(ρ̄1) + (1 − β)f(ρ̄2)

f(ρ̄1) + (1 − β)f(ρ̄2)
, α1R,2R =

(1 − α)f(ρ̄1)

f(ρ̄1) + (1 − β)f(ρ̄2)
,

and similarly for (3R,4,4R)
(3.4)

α3R,4 =
(1 − α)f(ρ̄1) + βf(ρ̄2)

(1 − α)f(ρ̄1) + f(ρ̄2)
, α3R,4R =

(1 − β)f(ρ̄2)

(1 − α)f(ρ̄1) + f(ρ̄2)
.

Starting with an empty net, (3.2) is verified and the boundary data are
given by (3.1). Then firstly the cars from road 1 and 2 reach road 3
and 4 respectively and the coefficients should be simply set as:
(3.5)
α1R,3 = α, α1R,2R = (1 − α), α3R,4 = β, α3R,4R = (1 − β).
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Successively, since also cars from road 2 reach road 3 (and cars from
road 1 reach road 4), we should modify in time the coefficients and
finally set them as in (3.3) and (3.4). Due to this choice, there exists
T > 0 such that the solution is given by the fluxes indicated in Figure
10 for every t ≥ T , thus we can see that the problem is modeled suitably
at not too heavy traffic level(corresponding to (3.2)). However, it is
necessary to let the coefficients α vary on time, as specified by the
subsequent theorem.

Theorem 3.1 Consider the circle network and assume (3.1), (3.2).
There exists time dependent coefficients α : [0,+∞) → [0, 1], with
(3.5) holding at time 0 and (3.3), (3.4) for large enough times, and
T > 0 such that the solution ρ(t) is constantly equal to that of Figure
10 for every t ≥ T .

For the proof see [3].

3.1.2. Heavy traffic. In this case the condition (3.2) is violated. More
precisely, traffic jams is possible under one of the following conditions

(3.6) f(ρ̄1) + (1 − β)f(ρ̄2) > f(σ),

(3.7) (1 − α)f(ρ̄1) + f(ρ̄2) > f(σ).

Consider situation of the traffic equilibrium for low traffic (Figure 10)
but now with conditions (3.6)-(3.7) holding true. Shocks are then
produced on some of roads at junctions (1,4R,1R) and (2,2R,3R).
Observe that if one starts from empty circle then rarefaction waves
start to fill up the circle approaching at some point a situation as in
Figure 10.

For simplicity, from now on assume the following notation: each wave
is indicated by (fl, fr) where fl is the value of the flux to the left of
the wave and fr the value of the flux to the right, being clear from the
context which are the values of ρ on the left and right of the wave. Set
for simplicity:

f1 := f(ρ̄1), f2 := f(ρ̄2),

q1 := q(1,4R,1R), q2 := q(2,2R,3R).

For the junction (1,4R,1R) we have

γmax
1 = f1, γ

max
4R = (1 − β)f2 , γ

max
1R = f(σ) = 1.

Then we have γ̂1R = f(σ) = 1, thus ρ̂1R = σ. Depending on the value
of q1 there are three cases:

(a) q1 ≤ 1− (1−β)f2

f(σ)
, then γ̂1 = f(σ)−(1−β)f2 and γ̂4R = (1−β)f2;

(b) 1− (1−β)f2

f(σ)
< q1 <

f1

f(σ)
, then γ̂1 = q f(σ) and γ̂4R = (1−q) f(σ);

(c) q1 ≥
F1

f(σ)
, then γ̂1 = f1 and γ̂4R = f(σ) − f1.
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In case (a) a shock is produced on road 1 and no wave on road 4R, in
case (c) a shock is produced on road 4R and no wave on road 1, finally
in case (b) a shock is produced on both roads.
An analogous analysis can be done for junction (2,2R,3R). First we
put in case (a) for both junctions (1,4R,1R) and (2,2R, 3R), so that
rarefactions are generated on roads 1R and 3R.
Note that the flux f(σ) on road 2R is composed of f(σ) − (1 − β)f2

from road 1 and (1 − β)f2 from road 4R. As α of flux from road 1
comes out through road 3 and all flux from 4R comes out through
road 3, we find that αf(σ) + (1 − α)(1 − β)f2 exits road 3 and
(1 − α)(f(σ) − (1 − β)f2) goes to 2R. Condition (3.6) implies that
(1 − α)f1 > (1 − α)(f(σ) − (1 − β)f2), thus on road 2R it produces a
rarefaction which approaches the crossing (2,2R,3R). This rarefaction
reduces the traffic flux entering from road 2R thus the circle is not
stuck. For roads 3R and 4R the analysis is very similar.

Proposition 3.2 The traffic on the circle never gets stuck if the
following holds:

q1 ≤ 1 −
(1 − β)f2

f(σ)
, q2 ≤ 1 −

(1 − α)f1

f(σ)
.

Suppose to be in case (b) for both junctions (1,4R,1R) and (2,2R, 3R).
Then rarefactions are produced on roads 1R and 3R and shocks on the
other roads.
The flux f(σ) on road 2R is formed of q1f(σ) from road 1 and
(1 − q1)f(σ) from road 4R. Since α of flux from road 1 gets out
from road 3 and all flux from 4R gets out from road 3, one has that
(1 − (1 − α)q1)f(σ) exits road 3 and (1 − α)q1f(σ) proceeds to 2R.
That is to say

α1R,2R = (1 − α)q1.

Then when the shock created on road 2R reaches the junction
(2,2R,3R), then a shock is produced on 1R:

(
f(σ),

(1 − q2)f(σ)

(1 − α)q1

)
.

We can proceed analogously for roads 3R and 4R. Then we conclude
that shocks are produced on the whole circle recursively. Let us
introduce some more notation:

• xn
1 is the value of the flux on road 1R after the n-th shock–

junction interaction;
• xn

2 is the value of the flux on road 2R after the n-th shock–
junction interaction;

• xn
3 is the value of the flux on road 3R after the n-th shock–

junction interaction;
• xn

4 is the value of the flux on road 4R after the n-th shock–
junction interaction;
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• xn
5 is the value of the flux on road 1 after the n-th shock–junction

interaction;
• xn

6 is the value of the flux on road 2 after the n-th shock–junction
interaction.

Defining xn ∈ R
6 to be the vector with xn

i as components, the evolution

(3.8) xn+1 = Axn

is obtained with the definition of the vector xn ∈ R
6 with xn

i as
components, where

A :=




0 0 1−q2

(1−α)q1

0 0 0

0 0 1 − q2 0 0 0
1−q1

(1−β)q2

0 0 0 0 0

(1 − q1) 0 0 0 0 0
q1 0 0 0 0 0
0 0 q2 0 0 0




and it follows that it suffices to consider the evolution of variables xn
1

and xn
3 . The corresponding reduced matrix is

Ã :=

(
1−q2

(1−α)q1

0

0 1−q1

(1−β)q2

)

and the eigenvalues are given by

λ2 =
(1 − q1)(1 − q2)

(1 − α)(1 − β)q1q2
.

Proposition 3.3 Assume that:

1 −
(1 − β)f2

f(σ)
< q1 <

f1

f(σ)
,

1 −
(1 − α)f1

f(σ)
< q1 <

f2

f(σ)
.

Then the traffic flow does not stop if the following holds:

(3.9)
(1 − q1)(1 − q2)

(1 − α)(1 − β)q1q2
> 1.

Whenever case (c) (strictly) holds for both junctions (1,4R,1R) and
(2,2R,3R), then rarefactions are generated on roads 1R and 3R and
shocks on roads 2R and 4R. Furthermore we have the inequalities:

q1f(σ) < f1, q2f(σ) < f2,

(1 − q1)f(σ) < (1 − α)f1, (1 − q2)f(σ) < (1 − β)f2,

and it is easy to verify that condition (3.9) can not hold. Hence the
following result is established.
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Proposition 3.4 Assume that:

q1 >
f1

f(σ)
,

q2 >
f2

f(σ)
,

then the circle does get stuck.
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