
A FLUID-DYNAMIC MODEL FOR TRAFFIC FLOW ON A

ROAD NETWORK

1. Traffic Flows

Here we refer to the book of Haberman [2] and to the papers [1, 3]
for the description of the mathematical model of traffic flows on road
networks. The study of traffic problems proposes to answer to several
questions: where to install traffic lights or stop signs; how long the
cycle of traffic lights should be; where to construct entrances, exits,
and overpasses. The principal aim is to discover traffic phenomena
in order to eventually take decisions which may alleviate congestion,
maximize flow of traffic, eliminate accidents, and so on. Here we focus
our attention on the traffic flow along a unidirectional highway. We
will analyze traffic situations resulting from the complex interaction
of many vehicles, instead of studying the behavior of individual cars.
Here we will only formulate deterministic mathematical models, but it
is also possible to develop statistical theories. The treatment of these
problems is based on the fundamental traffic variables: velocity, density
and flow. The nonlinear partial differential equation

(1.1) ∂tρ + ∂xf(ρ) = 0

is the consequence of conservation of cars and experimental
relationships between car velocity and traffic density.

2. Velocity Field

Let us consider a car moving along a highway. There are two ways to
measure velocity. The most common is to record the velocity vi = dxi

dt
of

each car. With N cars there are different velocities, vi(t), i = 1, . . . , N ,
each depending on time. If the number of cars N is large, it becomes
difficult to keep track of each car. So, instead of measuring the velocity
of each individual car, we associate to each point in space at each time
a velocity field, v(x, t). This would be the velocity measured by an
observer fixed at position x at time t.

3. Traffic Flow and Traffic Density

In addition to car velocities, an observer fixed at a certain position
along the highway, could measure the number of cars that passed in
a given length of time. The average number of cars passing per time
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unit (for example one minute) is called the traffic flow q = q(x, t).
A systematic procedure could be used to take into account cars
completely in a given region at a fixed time; estimates of fractional
cars could be used or a car could be counted only if its center is in
the region. These measurements give the density of cars, ρ, that
represents the number of cars per distance unit (for example hundred
of meters).

4. Flow equals density times velocity

There is a close relationship between the three fundamental traffic
variables: velocity, density and flow. It is quite realistic to think to
the flux q - the number of cars per time unit - as a function of the only
density ρ. More precisely the flux will be expressed as

(4.1) q(x, t) = ρ(x, t)v(x, t)

that means

traffic flow = (traffic density) × (mean velocity)

As the density increases (meaning there are more and more cars per
meter), the velocity of cars diminishes. Thus we make the hypotesis
that the velocity of cars at any point of the road is a regular strictly
decreasing function of the density:

v = v(ρ).

Lighthill and Whitham and independently Richards in the mid-1950s
proposed this type of mathematical model of traffic flow.
If there are no other cars on the highway (corresponding to very low
traffic densities), then the car would travel at the maximum speed vmax,

v(0) = vmax.

vmax is sometimes referred to as the ”mean free speed” corresponding
to the velocity cars would travel if they were free from interference
from other cars. At a certain density cars stop before they touch to
each other. This maximum density, ρmax, usually corresponds to what
is called bumper-to-bumper traffic:

v(ρmax) = 0.

4.1. Conservation of the number of cars.

Let us fix a certain segment (a, b) on the highway and two quite close
times t1 < t2. We are assuming that no cars are created or destroyed
in the interval, then the changes in the number of cars result from
crossings at x = a and x = b only. We deduce that the cars entered
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ρ

v

vmax

ρmax

from the point a at a certain time will exit from the point b. Thus the
difference of the the total quantity of cars in the segment between the
two considered instants

∫ b

a

ρ(x, t2)dx −

∫ b

a

ρ(x, t1)dx

must be equal to the difference of the total flux at the endpoints
∫ t2

t1

q(a, t)dt −

∫ t2

t1

q(b, t)dt.

Dividing the integrals for the product of b − a and t2 − t1 and taking
the limits (b − a) → 0 and (t2 − t1) → 0, with the assumption that v

and q are regular, we finally obtain the conservation law:

(4.2) ρt + qx = 0.

Taking the velocity as

v(ρ) = vmax

(

1 −

ρ

ρmax

)

,

we have the flux

q(ρ) = vmax

(

1 −

ρ

ρmax

)

ρ.

The flux is null if there are no cars or if the density is maximum and
it reaches the maximum for ρ = ρmax

2
. It is easy to see the presence of

discontinuity if someone brakes. The density assumes a discontinuity
that propagates backwards along the queue.
For further details see [2].
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