Innovative numerical methods for evolutionary partial differential equations and applications

Numerical validation of homogeneous multi-fluid models

Speaker: Dr. Phan Thi My Duyên
Joint work with: Prof. Giovanni Russo and Prof. Sergey Gavrilyuk

University of Catania, Italy

21st February, 2023
Outline

1. Problem setup
2. Detailed numerical solution
3. Numerical tests
4. Multi-fluid models
5. Numerical comparison
Problem setup

Figure: Homogeneous limit of a multi-fluid system.
Mass Lagrangian coordinates

We shall make use of the mass Lagrangian coordinates

$$\xi = \int_0^x \rho(z, t) \, dz = \int_0^X \rho_0(z) \, dz. \tag{1.1}$$

where x is the Eulerian coordinate, X is the initial position of fluid particles and $\rho_0(X)$ is the initial density. The Lagrangian coordinates ξ corresponding to the position x is the mass from the origin of the tube $x_0 = 0$, to x.

Figure: Describing the mass defined by Lagrangian coordinates
Outline

1. Problem setup
2. Detailed numerical solution
3. Numerical tests
4. Multi-fluid models
5. Numerical comparison
Let us consider the Euler equations in Lagrangian coordinates

\[
\frac{DU}{Dt} + \frac{\partial f(U)}{\partial \xi} = 0,
\]

(2.1)
Governing equations

Let us consider the Euler equations in Lagrangian coordinates

\[
\frac{DU}{Dt} + \frac{\partial f(U)}{\partial \xi} = 0, \tag{2.1}
\]

where

\[
U = \begin{pmatrix} V \\ u \\ E \end{pmatrix}, \quad f(U) = \begin{pmatrix} -u \\ \rho \\ up \end{pmatrix}. \tag{2.2}
\]

\(V = 1/\rho\) denotes the specific volume, \(E = \frac{1}{2}u^2 + e\), where \(e = e(V, p)\) denotes the specific internal energy.

The time derivative is Lagrangian derivative has the form

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + u \frac{\partial}{\partial x}. \tag{2.3}
\]
The Jacobian matrix of the flux $df(U)/dU$ has the eigenvalues

$$\lambda_1 = -C, \quad \lambda_2 = 0, \quad \lambda_3 = C,$$

(2.4)
The Jacobian matrix of the flux \(df(U)/dU \) has the eigenvalues

\[
\lambda_1 = -C, \quad \lambda_2 = 0, \quad \lambda_3 = C, \quad (2.4)
\]

where \(C \) denotes the Lagrangian sound velocity.

For ideal gas

\[
e = \frac{pV}{\gamma - 1}, \quad C^2 = \frac{\gamma p}{V}. \quad (2.5)
\]

For stiff fluid

\[
e = \frac{(p + \gamma p_\infty)V}{\gamma - 1}, \quad C^2 = \frac{\gamma(p + p_\infty)}{V} \quad (2.6)
\]
Finite volume method

We divide the total mass into intervals of the length
\[\Delta \xi_i = \xi_{i+1/2} - \xi_{i-1/2}. \]

Figure: Setting up for one pair of layer
Finite volume method

- Integrating (2.1) over \([\xi_{i-1/2}, \xi_{i+1/2}]\) gives

\[
\frac{d \langle U \rangle_i}{dt} + \frac{f(U(\xi_{i+1/2}, t)) - f(U(\xi_{i-1/2}, t))}{\Delta \xi_i} = 0, \quad (2.7)
\]

where \(\langle U \rangle_i = \frac{1}{\Delta \xi_i} \int_{\xi_{i-1/2}}^{\xi_{i+1/2}} U(\xi, t) d\xi\) and \(f(U(\xi_{i+1/2}, t))\) is the flux evaluated at \(\xi_{i+1/2}\.\)
Finite volume method

- Integrating (2.1) over \([\xi_{i-1/2}, \xi_{i+1/2}]\) gives

\[
\frac{d < U >_i}{dt} + \frac{f(U(\xi_{i+1/2}, t)) - f(U(\xi_{i-1/2}, t))}{\Delta \xi_i} = 0, \quad (2.7)
\]

where \(< U >_i = \frac{1}{\Delta \xi_i} \int_{\xi_{i-1/2}}^{\xi_{i+1/2}} U(\xi, t) d\xi\) and \(f(U(\xi_{i+1/2}, t))\) is the flux evaluated at \(\xi_{i+1/2}\).

We use \(U_i \approx < U >_i\) and replace \(f(U(\xi_{i+1/2}, t))\) by the approximating numerical flux \(F_{i+1/2}\).

- Second order (in space):

\[
F_{i+1/2} = F(U_{i+1/2}^-, U_{i+1/2}^+). \quad (2.8)
\]
\(U_{i+1/2}^- \) and \(U_{i+1/2}^+ \) can be reconstructed by using second order method with the minmod limiter:

\[
U_{i+1/2}^- = U_i + U_i' \frac{\Delta \xi_i}{2}, \quad U_{i+1/2}^+ = U_{i+1} - U_{i+1}' \frac{\Delta \xi_{i+1}}{2}, \quad (2.9)
\]
\(U^{-}_{i+1/2} \) and \(U^{+}_{i+1/2} \) can be reconstructed by using second order method with the minmod limiter:

\[
U^{-}_{i+1/2} = U_i + U'_i \frac{\Delta \xi_i}{2}, \quad U^{+}_{i+1/2} = U_{i+1} - U'_{i+1} \frac{\Delta \xi_{i+1}}{2}, \quad (2.9)
\]

Minmod slope for 3 parameters

\[
U'_i = 2\text{MM}\left(\frac{\theta(U^n_{i+1} - U^n_i)}{\Delta \xi_i + \Delta \xi_{i+1}}, \frac{U^n_{i+1} - U^n_{i-1}}{\Delta \xi_{i-1} + 2\Delta \xi_i + \Delta \xi_{i+1}}, \frac{\theta(U^n_i - U^n_{i-1})}{\Delta \xi_{i-1} + \Delta \xi_{i+1}} \right)
\]

where \(\text{MM} \) is the minmod limiter has the form

\[
\text{minmod3}(a, b, c) = \\
\begin{cases}
 \min(|a|, |b|, |c|)\text{sign}(a) & \text{if } a, b, c \text{ have the same sign} \\
 0 & \text{if } a, b, c \text{ do not have the same sign}
\end{cases}
\]
High order (in time) numerical scheme

The equation (2.7) can be written as follows

\[
\frac{dU_i}{dt} = - \frac{F_{i+1/2} - F_{i-1/2}}{\Delta \xi} =: \mathcal{F}_i.
\]

(2.10)
Heun’s method

We obtain the system of equations as follows

$$\frac{dU}{dt} = F$$ \hspace{1cm} (2.11)

where

$$U = \begin{pmatrix} U_1 \\ \vdots \\ U_N \end{pmatrix} \quad \text{and} \quad F = \begin{pmatrix} F_1 \\ \vdots \\ F_N \end{pmatrix}$$ \hspace{1cm} (2.12)

We will use Heun’s method which is second order accurate in time and \textit{strong stability-preserving}.
In order to generate a numerical solution, we follow 4 steps as follows

- **Step 1** $K_1 = \mathcal{F}(U^n)$,
- **Step 2** $\tilde{U} = U^n + \Delta tK_1$,
- **Step 3** $K_2 = \mathcal{F}(\tilde{U})$,
- **Step 4** $U^{n+1} = U^n + \Delta t(K_1 + K_2)/2$.
Roe Flux based on the composition of flux’s jump

\[
F_{\text{newROE}}(U_l, U_r) = \frac{1}{2} \left(F(U_l) + F(U_r) \right) - \frac{1}{2} \sum_{j=1}^{3} \text{sign}(\lambda_j^{\text{ROE}}) \alpha_j r_j,
\]

(2.13)

where \(\alpha_j \) is the coefficient defined by solving the system

\[
F(U_r) - F(U_l) = \frac{1}{2} \sum_{j=1}^{3} \text{sign}(\lambda_j^{\text{ROE}}) \alpha_j r_j.
\]

Roe Flux based on the composition of flux’s jump

\[
F_{\text{newROE}}(U_l, U_r) = \frac{1}{2} \left(F(U_l) + F(U_r) \right) - \frac{1}{2} \sum_{j=1}^{3} \text{sign}(\lambda_{j}^{ROE}) \alpha_j r_j,
\]

(2.13)

where \(\alpha_j \) is the coefficient defined by solving the system

\[
F(U_r) - F(U_l) = \sum_{j=1}^{3} \alpha_j r_j.
\]

(2.14)

This is the numerical flux obtained following Roe’s idea by decomposing the flux instead of the conservative variables.

Outline

1. Problem setup
2. Detailed numerical solution
3. Numerical tests
4. Multi-fluid models
5. Numerical comparison
Multi-layer tube

We consider a tube filled by n_p pairs of layers, each pair consists of 2 layers of 2 different fluids. The initial condition for the velocity u, pressure denoted by p and the initial density satisfies

\[
\rho = \bar{\rho} \left(\frac{p + p_{\infty}}{\bar{p} + p_{\infty}} \right)^{\frac{1}{\gamma}}, \quad \bar{\rho} \text{ is the middle point of the domain with length of 10, } \bar{p} = p_{10} = p_{20} = 10 \text{ and } \bar{\rho} \text{ is } \rho_{10} = 20 \text{ or } \rho_{20} = 10, \quad p_{\infty} \text{ is stiffness parameter, } p_{\infty1} = 100, \quad p_{\infty2} = 0, \quad \gamma_1 = 4.4 \text{ and } \gamma_2 = 1.4 \text{ corresponding to the position in the tube.}
\]
Wave interaction among small number of layers

We consider a tube with \(n_p = 5 \) and the following initial condition

\[
\begin{align*}
\rho_L &= 40, \ u_L = 0.9452, & \text{if } 0 \leq x \leq 1 \\
\rho_R &= 10, \ u_R = 0, & \text{if } 1 < x \leq 10,
\end{align*}
\]

(3.1)

and the initial density satisfies

\[
\rho = \bar{\rho} \left(\frac{p + p_\infty}{\bar{p} + p_\infty} \right)^{\frac{1}{\gamma}}.
\]
Wave interaction among small number of layers

Figure: Velocity profiles of shock propagating in the tube from the initial time up to final time $T_{\text{final}} = 3$. Result is plotted in Eulerian coordinates.
Wave interaction among small number of layers

Figure: Velocity profiles of shock propagating in the tube from the initial time up to final time $T_{final} = 3$. Result is plotted in Lagrangian coordinates.
Wave interaction among small number of layers

Figure: Pressure profiles of shock propagating in the tube from the initial time up to final time $T_{\text{final}} = 3$. Result is plotted in Eulerian coordinates.
Wave interaction among small number of layers

Figure: Pressure profiles of shock propagating in the tube from the initial time up to final time $T_{final} = 3$. Result is plotted in Lagrangian coordinates.
Wave interaction among small number of layers

Figure: Density profiles of shock propagating in the tube from the initial time up to final time $T_{\text{final}} = 3$. Result is plotted in Eulerian coordinates.
Wave interaction among small number of layers

Figure: Density profiles of shock propagating in the tube from the initial time up to final time $T_{\text{final}} = 3$. Result is plotted in Lagrangian coordinates.
We consider a initial condition with velocity is zero, a smooth pressure profile of the form

\[
\begin{aligned}
\rho &= 10 + M \left(1 + \cos \left(\frac{2\pi}{L} (x - \bar{x}) \right) \right), \quad \text{if } |x - \bar{x}| < L/2 \\
\rho &= 10, \quad \text{if } |x - \bar{x}| \geq L/2
\end{aligned}
\]

(3.2)

and the initial density satisfies \(\rho = \bar{\rho} \left(\frac{p + p_{\infty}}{\bar{\rho} + p_{\infty}} \right)^{\frac{1}{\gamma}}. \)
Initial condition with $M = 5, L = 5$.

Figure: Initial condition.
Result with $M = 5$, $L = 5$. Numerical flux: Roe Flux based on the composition of flux’s jump

Figure: Result with 20 pairs of layers, 50 points for each pair.
Outline

1. Problem setup
2. Detailed numerical solution
3. Numerical tests
4. Multi-fluid models
5. Numerical comparison
Isentropic homogeneous model (2x2 model)

Considering isentropic Euler equations corresponding to the conservation of mass and momentum in Lagrangian coordinates

\[
\begin{align*}
V_t - u\xi &= 0 \\
u_t + p\xi &= 0,
\end{align*}
\] (4.1)

Relation \(V = V(p) \) for the mixture

\[
V = Y_1 V_{10} \left(\frac{p + p_{\infty,1}}{p_{10} + p_{\infty,1}} \right)^{-\frac{1}{\gamma_1}} + Y_2 V_{20} \left(\frac{p + p_{\infty,2}}{p_{20} + p_{\infty,2}} \right)^{-\frac{1}{\gamma_2}},
\] (4.2)

where \(Y_1 \) and \(Y_2 \) are the mass fraction of each phase.
3x3 system with turbulent energy

The system in Lagrangian form

\[
\begin{align*}
V_t - u_\xi &= 0, \\
u_t + \tilde{p}_\xi &= 0, \\
\epsilon_t + (u\tilde{p})_\xi &= 0,
\end{align*}
\]

where \(V = \frac{1}{\rho} \), \(\epsilon = e + \frac{u^2}{2} + Vk \), \(\tilde{p} = p + 2k \) and \(e = Y_1 e_1 + Y_2 e_2 \) is the specific internal energy of the mixture,

\[
e_1 = \frac{p + \gamma_1 p_\infty 1L}{\gamma_1 - 1} V_1, \quad e_2 = \frac{p + \gamma_2 p_\infty 2}{\gamma_2 - 1} V_2.
\]

Outline

1. Problem setup
2. Detailed numerical solution
3. Numerical tests
4. Multi-fluid models
5. Numerical comparison
Data for two cases

- Case 1: $\rho_{10}/\rho_{20} = 2$
- Case 2: $\rho_{10}/\rho_{20} = 10$

<table>
<thead>
<tr>
<th>Reference data</th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_{10}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ρ_{10}</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>$p_{\infty,1}$</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>γ_1</td>
<td>4.4</td>
<td>4.4</td>
</tr>
<tr>
<td>p_{20}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ρ_{20}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$p_{\infty,1}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>γ_2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table: Reference states of the multilayer tube
Figure: Comparison between numerical solution of multi-fluid and homogeneous models before shock formation for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 1.3$.
Figure: Comparison between numerical solution of multi-fluid and homogeneous models before shock formation for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 2.5$.
Numerical results after shock formation

Figure: Comparison between numerical solution of multi-fluid and homogeneous models after shock formation for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 1.3$ (strong shock).
Using Gaussian blurring to smooth out numerical solutions

\[U_i = \frac{1}{2}(U_{i-1} + U_{i+1}). \] \hspace{1cm} (5.1)
Numerical results after shock formation

Figure: Comparison between smoothed numerical solution of multi-fluid and homogeneous models for the case of density ratio $\rho_{10}/\rho_{20} = 2$.
Numerical results after shock formation

Figure: Comparison between numerical solution of multi-fluid and homogeneous models after shock formation for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 2.5$ (strong shock).
Numerical results after shock formation

Figure: Comparison between smoothed numerical solution of multi-fluid and homogeneous models for the case density ratio $\rho_{10}/\rho_{20} = 10$.
We consider the test with the following initial condition for the pressure

$$p = \begin{cases} 50, & \text{if } x \leq 5 \\ 10, & \text{if } x > 5 \end{cases} \quad (5.2)$$

where $x \in [0, 10]$. The initial velocity is zero everywhere and the initial density satisfies $\rho = \bar{\rho} \left(\frac{\rho + \rho_\infty}{\bar{\rho} + \rho_\infty} \right)^{\frac{1}{\gamma}}$. For the 3×3 model k is also zero.
Figure: Comparison between detailed numerical solution of multi-fluid and homogeneous models of Riemann problem (5.2) for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 1.5$.

Problem setup

Detailed numerical solution

Numerical tests

Multi-fluid models

Numerical comparison

Riemann problem for multi-fluid
Riemann problem for multi-fluid

Figure: Comparison between smoothed numerical solution of multi-fluid and homogeneous models of Riemann problem (5.2) for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 1.5$.
Riemann problem for multi-fluid

Figure: Comparison between detailed numerical solution of multi-fluid and homogeneous models of Riemann problem (5.2) for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 3$.
Riemann problem for multi-fluid

Figure: Comparison between smoothed numerical solution of multi-fluid and homogeneous models of Riemann problem (5.2) for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 3$.
The initial condition of the travelling shock for 2×2 system is

$$
\begin{cases}
 p_L = 40, \ u_L = 0.9452, & \text{if } 0 \leq x \leq 1 \\
 p_R = 10, \ u_R = 0, & \text{if } 1 < x \leq 10,
\end{cases}
$$

and the initial density satisfies

$$
\rho = \bar{\rho} \left(\frac{p + p_\infty}{\bar{p} + p_\infty} \right)^{\frac{1}{\gamma}}.
$$

At $x = 10$ we impose wall conditions: $u = 0$, $\partial p / \partial \xi = 0$.

Travelling shock - moderate density ratio
Numerical results before hitting the wall

Figure: Comparison between smoothed detailed numerical solution, 2 × 2 system, 3 × 3 system before hitting the wall for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 2.5$.
Numerical results after hitting the wall

Figure: Comparison between smoothed detailed numerical solution, 2×2 system, 3×3 system after hitting the wall for the case of density ratio $\rho_{10}/\rho_{20} = 2$ at time $t = 5$.
The initial condition of the Riemann problem is

\[
\begin{cases}
 p_L = 40, \quad u_L = 0.5286, & \text{if } x \leq 1 \\
 p_R = 10, \quad u_R = 0, & \text{if } x > 1,
\end{cases}
\]

(5.4)

where \(x \in [0, 10] \).

The initial density satisfies

\[\rho = \rho_0 \left(\frac{p + p_\infty}{\rho_0 + p_\infty} \right)^{\frac{1}{\gamma}}. \]
Numerical results before hitting the wall

Figure: Comparison between smoothed detailed numerical solution, 2 × 2 system, 3 × 3 system before hitting the wall for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 5$.
Numerical results after hitting the wall

Figure: Comparison between smoothed detailed numerical solution, 2 × 2 system, 3 × 3 system after hitting the wall for the case of density ratio $\rho_{10}/\rho_{20} = 10$ at time $t = 9.5$.
Comparison of the computation time

<table>
<thead>
<tr>
<th>Detailed computation</th>
<th>2×2 system</th>
<th>3×3 system</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.8</td>
<td>42.8</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Table: Comparison of the computation time (seconds) among the computations of the detailed numerical solution and the two homogeneous models

Conclusion: It is much more expensive to perform the detailed numerical simulation than to numerically solve the homogeneous models.
Discussion and conclusion

- For smooth solutions (in pressure and velocity) the two models are both in very good agreement with the detailed numerical solution of multilayer Euler equations.
- When a shock develops, the multilayer solution becomes highly oscillatory and transforms to a dispersive shock for large amplitude shocks.
 - For moderate density ratio, the 2×2 model gives a better prediction of the shock position.
 - For large density ratio, the turbulent 3×3 model is in better agreement with a smoothed out version of the detailed numerical compared with the simple 2×2 model.
- Open problem: construction of non isentropic homogenized models.
https://doi.org/10.1016/j.amc.2022.127693
Thank you for your attention!