Numerical treatment of boundary conditions for blood flow modeling in networks of viscoelastic vessels

Francesco Piccioli†, Giulia Bertaglia*, Alessandro Valiani†, and Valerio Caleffi†

† Department of Engineering, University of Ferrara
*Department of Environmental and Prevention Sciences, University of Ferrara
Context

• The numerical modelling of blood flow in cardiovascular networks provide satisfactory results only if the mechanical behavior of vessels is correctly accounted for\cite{1}. In particular, an accurate viscoelastic characterization of the vessel wall is crucial.

• In previous works, we have proposed a Standard Linear Solid model (SLSM) to describe the vessel wall rheology\cite{2,3}, enabling to simulate the most significant aspects related to the viscoelasticity of the vessel wall: the exponential decay in time of the stress and the creep phenomena. This allows to account for damping effects related to the partial dissipation of energy.

Motivation

• Although the viscoelasticity is usually neglected in the implementation of internal and external boundary conditions, in favor of a local elastic approach, we believe that the inclusion of the viscoelastic contribution at boundaries is mandatory for a correct hemodynamic analysis\cite{4}.

• This work presents a methodology for modelling cardiovascular networks accounting for the viscoelastic behavior of blood vessels also in the treatment of the inflow/outflow boundaries and at the junctions.

\cite{1} L. Formaggia, D. Lamponi, and A. Quarteroni (2003), J. Eng. Math. 47.
Mathematical model

The mathematical model for the blood flow in the single vessel is the augmented fluid-structure interaction (a-FSI) system\cite{2}:

\[
\begin{align*}
\frac{\partial}{\partial t} A + \frac{\partial}{\partial x} (A u) &= 0 \\
\frac{\partial}{\partial t} (A u) + \frac{\partial}{\partial x} (A u^2) + \frac{A}{\rho} \frac{\partial}{\partial x} p &= \frac{f}{\rho} \\
\frac{\partial}{\partial t} p + d \frac{\partial}{\partial x} (A u) &= S \\
\frac{\partial}{\partial t} A_0 &= 0 \\
\frac{\partial}{\partial t} E_0 &= 0 \\
\frac{\partial}{\partial t} p_{\text{ext}} &= 0
\end{align*}
\]

Eq. continuity
Eq. momentum
Viscoelastic tube law
Closing equations for longitudinal discontinuities

\[
\frac{\partial}{\partial t} Q + \frac{\partial}{\partial x} f(Q) + B(Q) \frac{\partial}{\partial x} Q = S(Q) \quad \text{or} \quad \frac{\partial}{\partial t} Q + A(Q) \frac{\partial}{\partial x} Q = S(Q)
\]

Viscoelastic tube law

The SLSM model is defined by three parameters:
- The instantaneous Young modulus, \(E_0(x) \);
- The asymptotic Young modulus, \(E_\infty(x) \);
- The relaxation time, \(\tau_r(x) \).

The instantaneous behaviour is governed by three parameters \(K, m \) and \(n \).

\[
\frac{\partial_t p}{d} + \left[\frac{K}{A} (m \alpha^m - n \alpha^n) \right] \frac{\partial_x (Au)}{S} = \frac{1}{\tau_r \left[\frac{E_\infty}{E_0} \right]} \frac{\alpha^m - \alpha^n}{S} - (p - p_{ext})
\]
In the physiological range of the parameters, the a-FSI system is (not strictly) hyperbolic and can be written in quasi-linear form and is characterized by:

- **4 linearly degenerated fields**, associated with contact discontinuity waves and Riemann Invariants:

 \[\Gamma^L_D = A u, \quad \Gamma'^L_D = p + \frac{1}{2} \rho u^2 \]

- **2 genuinely non-linear fields**, associated with either shocks or rarefactions and Riemann Invariants:

 \[\Gamma_{1,2} = u \pm \int \frac{c(A)}{A} dA, \quad \Gamma_3 = p - \int d(A) dA \]
Numerical scheme

Space discretization **Finite Volume (FV) method – TVD estrapolation – minmod limiter**

\[
\Delta Q_i^{(k)} = \text{minmod} \left(Q_i^{(k)} - Q_{i-1}^{(k)}, Q_{i+1}^{(k)} - Q_i^{(k)} \right)
\]

\[
Q_{i+1}^{(k)} = Q_i^{(k)} \pm \Delta Q_i^{(k)}
\]

Time discretization A stiffly accurate **IMEX-SSP(3,3,2)** scheme is used. The scheme is asymptotic preserving (AP) and asymptotic accurate in the zero relaxation limit\[2,5,6\].

- An **L-stable diagonally implicit Runge-Kutta** scheme is used for the **stiff part**
- An **explicit SSP scheme** is provided for the **non-stiff part**

\[
Q_i^{(k)} = Q_i^n - \frac{\Delta t}{\Delta x} \sum_{j=1}^{k-1} \tilde{a}_{kj} \left[\left(F_{i+\frac{1}{2}}^{(j)} - F_{i-\frac{1}{2}}^{(j)} \right) + \left(D_{i+\frac{1}{2}}^{(j)} - D_{i-\frac{1}{2}}^{(j)} \right) + B \left(Q_i^{(j)} \right) \Delta Q_i^{(j)} \right] + \Delta t \sum_{j=1}^{k} \alpha_{kj} S \left(Q_i^{(j)} \right)
\]

\[
Q_i^{n+1} = Q_i^n - \frac{\Delta t}{\Delta x} \sum_{k=1}^{s} \tilde{\omega}_k \left[\left(F_{i+\frac{1}{2}}^{(k)} - F_{i-\frac{1}{2}}^{(k)} \right) + \left(D_{i+\frac{1}{2}}^{(k)} - D_{i-\frac{1}{2}}^{(k)} \right) + B \left(Q_i^{(k)} \right) \Delta Q_i^{(k)} \right] + \Delta t \sum_{k=1}^{s} \omega_k S \left(Q_i^{(k)} \right)
\]

Numerical fluxes and non conservative jumps are obtained applying the DOT solver\[7\]

Numerical scheme

F and D are the vectors of numerical fluxes and non-conservative jumps, evaluated at the cell boundaries though the path-conservative Dumbser-Osher-Toro (DOT) Riemann solver [7].

$$
F_{i \pm \frac{1}{2}} = \frac{1}{2} \left[f \left(Q_{i \pm \frac{1}{2}}^{+} \right) + f \left(Q_{i \pm \frac{1}{2}}^{-} \right) \right] - \frac{1}{2} \int_{0}^{1} \left| A \left(\Psi \left(Q_{i \pm \frac{1}{2}}^{-}, Q_{i \pm \frac{1}{2}}^{+}, s \right) \right) \right| \frac{\partial \Psi}{\partial s} ds
$$

$$
D_{i \pm \frac{1}{2}} = \frac{1}{2} \int_{0}^{1} \left| B \left(\Psi \left(Q_{i \pm \frac{1}{2}}^{-}, Q_{i \pm \frac{1}{2}}^{+}, s \right) \right) \right| \frac{\partial \Psi}{\partial s} ds
$$

Boundaries of the network
Boundary conditions

Venous return

Left atrium

Mitral valve

Left ventricle

Aortic valve

Aortic root

Mathematical model

Numerical scheme

Validation and application

Conclusions
Cardiac contraction model

\[E(t) = \left[\frac{E_{\text{max}} - E_{\text{min}}}{\max(H_1(t)H_2(t))} \right] H_1(t)H_2(t) + E_{\text{min}} \]

\[p(t) = E(t)[v(t) - v_{p0}] - Rq_{\text{out}}(t) \]

\[\frac{dv}{dt} = q_{\text{in}}(t) - q_{\text{out}}(t) \]

\[\frac{d\zeta}{dt} = \mathcal{F}(\zeta, K_{vo}, K_{vc}, \Delta p) = \begin{cases}
[1 - \zeta(t)]K_{vo}\Delta p(t) & \text{if } \Delta p(t) > 0 \\
(\zeta(t)K_{vc}\Delta p(t) & \text{if } \Delta p(t) < 0
\end{cases} \]

\[\frac{dq}{dt} = \frac{1}{L(t)}[\Delta p(t) - B(t)q(t)|q(t)|] \]
Cardiac contraction model

Equations that govern the cardiac contraction model are integrated in time following the IMEX-RK scheme, treating the equations explicitly since they do not contain any stiff term.

\[q_v^{(k)} = q_v^n + \Delta t \sum_{j=1}^{k-1} \tilde{a}_{kj} \left[\frac{1}{L(j)} \left(\Delta p^{(j)} - B^{(j)} q^{(j)} \right) \right] \]

\[q_v^{n+1} = q_v^n + \Delta t \sum_{k=1}^{s} \tilde{\omega}_k \left[\frac{1}{L(k)} \left(\Delta p^{(k)} - B^{(k)} q^{(k)} \right) \right] \]

\(\zeta(t) \) and \(v(t) \) are integrated following the same approach.
Junctions

The numerical modelling of the internal boundaries is derived from the solution of an extended Riemann problem (RP), here called the Junction Riemann problem (JRP).

We remember that for a classic 1D RP:

• the RP – involving only a continuity equation and a momentum equation – is characterised by a solution constituted by one intermediate constant state (the star region) separated from the initially imposed constant states by non-linear waves (shock waves or rarefactions).

• Adding a further equations to account for mechanical discontinuities results in an enrichment of the eigenstructure with null eigenvalues and stationary contact waves become part of the solution.

• restricting the analysis to sub-critical flows, the non-linear waves are directed from the centre to the periphery, the intermediate constant state become two, separated from each other by a new stationary contact discontinuity wave.
Junctions

The extension to the JRP follows:

- Conceiving the position of the initial discontinuity as a junction section among branches, the RP partial solution related to each branch consists of an initial state separated from the star region of the same branch by a non-linear wave, while the intermediate states of the branching vessels, adjacent to the node, are separated from each other by contact discontinuities.
Junctions

The unknowns of the JRP are the flow rate, q_j^*, the cross-sectional area, A_j^*, and pressure, p_j^*, of the star region for each branching vessel.

\[
\begin{align*}
\sum_{i=1}^{N} \theta_{n_i} A_i^* u_i^* &= 0 \\
(p_1^* + \frac{1}{2} \rho u_1^{*2}) - (p_i^* + \frac{1}{2} \rho u_i^{*2}) &= 0 \quad i = 2, \ldots, N \\
u_i^* - u_i^{1D} + \theta_{n_i} \int_{A_i^{1D}}^{A_i^*} \frac{c(A)}{A} \, dA &= 0 \quad i = 1, \ldots, N \\
p_i^* - p_i^{1D} + \int_{A_i^{1D}}^{A_i^*} d(A) \, dA &= 0 \quad i = 1, \ldots, N
\end{align*}
\]
Second order accuracy at boundaries

At boundaries, the solution obtained from the computation of the boundary condition (i.e., JRP, inlet, outlets) is used to compensate for the missing cell average values in the slope computation:

\[
\Delta Q_1^{(k)} = \minmod(Q_1^{(k)} - Q_{BC}^{(k)}, Q_2^{(k)} - Q_1^{(k)})
\]

\[
\Delta Q_{n_c}^{(k)} = \minmod(Q_{n_c}^{(k)} - Q_{n_c-1}^{(k)}, Q_{BC}^{(k)} - Q_{n_c}^{(k)})
\]
Validation tests

2-vessel artery

2-vessel vein
<table>
<thead>
<tr>
<th>Test</th>
<th>Variable</th>
<th>n_c</th>
<th>L^1</th>
<th>$O(L^1)$</th>
<th>L^2</th>
<th>$O(L^2)$</th>
<th>L^∞</th>
<th>$O(L^\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>33</td>
<td>3.47×10^{-8}</td>
<td>-</td>
<td>6.03×10^{-8}</td>
<td>-</td>
<td>1.36×10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>3.75×10^{-9}</td>
<td>2.02</td>
<td>6.58×10^{-9}</td>
<td>2.02</td>
<td>1.48×10^{-8}</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>4.13×10^{-10}</td>
<td>2.01</td>
<td>7.25×10^{-10}</td>
<td>2.01</td>
<td>1.64×10^{-9}</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>4.52×10^{-11}</td>
<td>2.01</td>
<td>7.95×10^{-11}</td>
<td>2.01</td>
<td>1.80×10^{-10}</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>4.52×10^{-12}</td>
<td>2.10</td>
<td>7.94×10^{-12}</td>
<td>2.10</td>
<td>1.80×10^{-11}</td>
<td>2.10</td>
</tr>
<tr>
<td>AA</td>
<td></td>
<td>33</td>
<td>1.70×10^{-7}</td>
<td>-</td>
<td>2.98×10^{-7}</td>
<td>-</td>
<td>7.51×10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>2.38×10^{-8}</td>
<td>1.79</td>
<td>4.29×10^{-8}</td>
<td>1.77</td>
<td>1.16×10^{-7}</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>2.82×10^{-9}</td>
<td>1.95</td>
<td>5.10×10^{-9}</td>
<td>1.94</td>
<td>1.40×10^{-8}</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>3.16×10^{-10}</td>
<td>2.00</td>
<td>5.74×10^{-10}</td>
<td>2.00</td>
<td>1.58×10^{-9}</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>3.18×10^{-11}</td>
<td>2.10</td>
<td>5.78×10^{-11}</td>
<td>2.10</td>
<td>1.60×10^{-10}</td>
<td>2.10</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>33</td>
<td>8.21</td>
<td>-</td>
<td>1.43×10^3</td>
<td>-</td>
<td>3.42×10^3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>9.14×10^{-1}</td>
<td>2.00</td>
<td>1.60</td>
<td>2.00</td>
<td>3.75</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>1.00×10^{-1}</td>
<td>2.01</td>
<td>1.76×10^{-1}</td>
<td>2.01</td>
<td>4.12×10^{-1}</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>1.10×10^{-2}</td>
<td>2.01</td>
<td>1.93×10^{-2}</td>
<td>2.01</td>
<td>4.52×10^{-2}</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>1.10×10^{-3}</td>
<td>2.10</td>
<td>1.93×10^{-3}</td>
<td>2.10</td>
<td>4.51×10^{-3}</td>
<td>2.10</td>
</tr>
<tr>
<td>VV</td>
<td></td>
<td>33</td>
<td>2.91×10^{-8}</td>
<td>-</td>
<td>9.49×10^{-8}</td>
<td>-</td>
<td>7.55×10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>3.26×10^{-9}</td>
<td>2.00</td>
<td>1.11×10^{-8}</td>
<td>1.96</td>
<td>1.15×10^{-7}</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>3.57×10^{-10}</td>
<td>2.01</td>
<td>1.21×10^{-9}</td>
<td>2.01</td>
<td>1.38×10^{-8}</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>3.88×10^{-11}</td>
<td>2.02</td>
<td>1.34×10^{-10}</td>
<td>2.01</td>
<td>1.54×10^{-9}</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>3.87×10^{-12}</td>
<td>2.10</td>
<td>1.34×10^{-11}</td>
<td>2.10</td>
<td>1.55×10^{-10}</td>
<td>2.09</td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td>33</td>
<td>1.61×10^{-9}</td>
<td>-</td>
<td>7.34×10^{-9}</td>
<td>-</td>
<td>6.33×10^{-7}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>2.15×10^{-9}</td>
<td>1.83</td>
<td>9.46×10^{-9}</td>
<td>1.86</td>
<td>1.02×10^{-8}</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>2.59×10^{-10}</td>
<td>1.93</td>
<td>1.15×10^{-9}</td>
<td>1.91</td>
<td>1.35×10^{-8}</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>2.94×10^{-11}</td>
<td>1.99</td>
<td>1.32×10^{-10}</td>
<td>1.97</td>
<td>1.58×10^{-9}</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>2.97×10^{-12}</td>
<td>2.10</td>
<td>1.34×10^{-11}</td>
<td>2.10</td>
<td>1.61×10^{-10}</td>
<td>2.08</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>33</td>
<td>6.55×10^{-1}</td>
<td>-</td>
<td>2.12</td>
<td>-</td>
<td>1.69×10^{1}</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>8.89×10^{-2}</td>
<td>1.82</td>
<td>3.25×10^{-1}</td>
<td>1.71</td>
<td>3.54</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>297</td>
<td>1.19×10^{-2}</td>
<td>1.83</td>
<td>4.77×10^{-2}</td>
<td>1.75</td>
<td>5.20×10^{-1}</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>891</td>
<td>1.33×10^{-3}</td>
<td>2.00</td>
<td>5.44×10^{-3}</td>
<td>1.98</td>
<td>6.15×10^{-2}</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2673</td>
<td>1.37×10^{-4}</td>
<td>2.07</td>
<td>5.69×10^{-4}</td>
<td>2.05</td>
<td>6.48×10^{-3}</td>
<td>2.05</td>
</tr>
</tbody>
</table>
ADAN56 $^{[4,5]}$

Aortic arch

Conclusions

Reference papers:

Conclusions

Thank you for your attention.