
Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

Innovative numerical methods for evolutionary
partial differential equations and applications

Numerical validation of homogeneous multi-fluid models

Speaker: Dr. Phan Thi My Duyen
Joint work with: Prof. Giovanni Russo

and Prof. Sergey Gavrilyuk

University of Catania, Italy

21st February, 2023



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

Outline

1 Problem setup

2 Detailed numerical solution

3 Numerical tests

4 Multi-fluid models

5 Numerical comparison



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

Problem setup

F1 F2

M1 M2

np pairs np →∞

Figure: Homogeneous limit of a multi-fluid system.
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Mass Lagrangian coordinates

We shall make use of the mass Lagrangian coordinates

ξ =

∫ x

0
ρ(z, t)dz =

∫ X

0
ρ0(z) dz. (1.1)

where x is the Eulerian coordinate, X is the initial position of
fluid particles and ρ0(X ) is the initial density.
The Lagrangian coordinates ξ corresponding to the position x
is the mass from the origin of the tube x0 = 0, to x .

0 x L

Figure: Describing the mass defined by Lagrangian coordinates
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Governing equations

Let us consider the Euler equations in Lagrangian coordinates

DU
Dt

+
∂f (U)

∂ξ
= 0, (2.1)

where

U =

V
u
E

 , f (U) =

−u
p

up

 . (2.2)

V = 1/ρ denotes the specific volume, E = 1
2u2 + e, where

e = e(V ,p) denotes the specific internal energy.
The time derivative is Lagrangian derivative has the form

D
Dt

=
∂

∂t
+ u

∂

∂x
. (2.3)



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

Governing equations

Let us consider the Euler equations in Lagrangian coordinates

DU
Dt

+
∂f (U)

∂ξ
= 0, (2.1)

where

U =

V
u
E

 , f (U) =

−u
p

up

 . (2.2)

V = 1/ρ denotes the specific volume, E = 1
2u2 + e, where

e = e(V ,p) denotes the specific internal energy.
The time derivative is Lagrangian derivative has the form

D
Dt

=
∂

∂t
+ u

∂

∂x
. (2.3)



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

The Jacobian matrix of the flux df (U)/dU has the
eigenvalues

λ1 = −C, λ2 = 0, λ3 = C, (2.4)

where C denotes the Lagrangian sound velocity.
For ideal gas

e =
pV
γ − 1

, C2 =
γp
V
. (2.5)

For stiff fluid

e =
(p + γp∞)V

γ − 1
, C2 =

γ(p + p∞)

V
(2.6)
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Finite volume method

We divide the total mass into intervals of the length
∆ξi = ξi+1/2 − ξi−1/2.

∆ξL∆ξL∆ξL∆ξL∆ξL∆ξL ∆ξR ∆ξR ∆ξR ∆ξR ∆ξR

F1 F2

Figure: Setting up for one pair of layer
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Finite volume method

Integrating (2.1) over [ξi−1/2, ξi+1/2] gives

d < U >i

dt
+

f (U(ξi+1/2, t))− f (U(ξi−1/2, t))

∆ξi
= 0, (2.7)

where < U >i=
1

∆ξi

∫ ξi+1/2

ξi−1/2

U(ξ, t)dξ and f (U(ξi+1/2, t)) is

the flux evaluated at ξi+1/2.

We use Ui ≈< U >i and replace f (U(ξi+1/2, t)) by the
approximating numerical flux Fi+1/2.
Second order (in space):

Fi+1/2 = F (U−i+1/2,U
+
i+1/2). (2.8)



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

Finite volume method

Integrating (2.1) over [ξi−1/2, ξi+1/2] gives

d < U >i

dt
+

f (U(ξi+1/2, t))− f (U(ξi−1/2, t))

∆ξi
= 0, (2.7)

where < U >i=
1

∆ξi

∫ ξi+1/2

ξi−1/2

U(ξ, t)dξ and f (U(ξi+1/2, t)) is

the flux evaluated at ξi+1/2.
We use Ui ≈< U >i and replace f (U(ξi+1/2, t)) by the
approximating numerical flux Fi+1/2.
Second order (in space):

Fi+1/2 = F (U−i+1/2,U
+
i+1/2). (2.8)



Problem setup Detailed numerical solution Numerical tests Multi-fluid models Numerical comparison

U−i+1/2 and U+
i+1/2 can be reconstructed by using second

order method with the minmod limiter:

U−
i+ 1

2
= Ui + U ′i

∆ξi

2
, U+

i+ 1
2

= Ui+1 − U ′i+1
∆ξi+1

2
, (2.9)

Minmod slope for 3 parameters

U ′i = 2MM
(θ(Un

i+1 − Un
i )

∆ξi + ∆ξi+1
,

Un
i+1 − Un

i−1

∆ξi−1 + 2∆ξi + ∆ξi+1
,
θ(Un

i − Un
i−1)

∆ξi−1 + ∆ξi

)
where MM is the minmod limiter has the form

minmod3(a,b, c) ={
min(|a|, |b|, |c|)sign(a) if a,b, c have the same sign
0 if a,b, c do not have the same sign
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High order (in time) numerical scheme

The equation (2.7) can be written as follows

dUi

dt
= −

Fi+1/2 − Fi−1/2

∆ξ
=: Fi . (2.10)
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Heun’s method

We obtain the system of equations as follows

dU
dt

= F (2.11)

where

U =

U1
...

UN

 and F =

F1
...

FN

 (2.12)

We will use Heun’s method which is second order accurate in
time and strong stability-preserving.
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Heun’s method

In order to generate a numerical solution, we follow 4 steps as
follows

Step 1 K1 = F (Un),

Step 2 Ũ = Un + ∆tK1,

Step 3 K2 = F (Ũ),

Step 4 Un+1 = Un + ∆t(K1 + K2)/2.
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Roe Flux based on the composition of flux’s jump

FnewROE (Ul ,Ur ) =
1
2

(
F (Ul) + F (Ur )

)
− 1

2

3∑
j=1

sign(λROE
j )αj rj ,

(2.13)

where αj is the coefficient defined by solving the system

F (Ur )− F (Ul) =
3∑

j=1

αj rj . (2.14)

This is the numerical flux obtained following Roe’s idea by
decomposing the flux instead of the conservative variables.
C. D. Munz. "On Godunov-Type Schemes for Lagrangian Gas Dynamics". In:
SIAM Journal on Numerical Analysis 31.1 (Feb. 1994), pp. 17-42.
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Multi-layer tube

We consider a tube filled by np pairs of layers, each pair
consists of 2 layers of 2 different fluids.
The initial condition for the velocity u, pressure denoted by p

and the initial density satisfies ρ = ρ̄
(

p+p∞
p̄+p∞

) 1
γ , x̄ is the middle

point of the domain with length of 10, p̄ = p10 = p20 = 10 and ρ̄
is ρ10 = 20 or ρ20 = 10, p∞ is stiffness parameter, p∞1 = 100,
p∞2 = 0, γ1 = 4.4 and γ2 = 1.4 corresponding to the position in
the tube.
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Wave interaction among small number of layers

We consider a tube with np = 5 and the following initial
condition {

pL = 40,uL = 0.9452, if 0 ≤ x ≤ 1
pR = 10,uR = 0, if 1 < x ≤ 10,

(3.1)

and the initial density satisfies ρ = ρ̄
(p + p∞

p̄ + p∞

) 1
γ .
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Wave interaction among small number of layers

Figure: Velocity profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Eulerian
coordinates
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Wave interaction among small number of layers

Figure: Velocity profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Lagrangian
coordinates
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Wave interaction among small number of layers

Figure: Pressure profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Eulerian
coordinates
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Wave interaction among small number of layers

Figure: Pressure profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Lagrangian
coordinates
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Wave interaction among small number of layers

Figure: Density profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Eulerian
coordinates
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Wave interaction among small number of layers

Figure: Density profiles of shock propagating in the tube from the
initial time up to final time Tfinal = 3. Result is plotted in Lagrangian
coordinates
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We consider a initial condition with velocity is zero, a smooth
pressure profile of the form{

p = 10 + M
(

1 + cos
(

2π(x−x̄)
L

))
, if |x − x̄ | < L/2

p = 10, if |x − x̄ | ≥ L/2
(3.2)

and the initial density satisfies ρ = ρ̄
(p + p∞

p̄ + p∞

) 1
γ .
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Initial condition with M = 5, L = 5.
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Figure: Initial condition.
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Result with M = 5, L = 5. Numerical flux: Roe Flux
based on the composition of flux’s jump

0 5 10
x 

-0.2

-0.1

0

0.1

0.2
V

el
oc

ity

t = 1.5, CFL = 0.9 , theta = 1.8

0 5 10
x 

10

12

14

16

P
re

ss
ur

e

0 2 4 6 8 10

x 

1

2

3

4

5

ga
m

m
a

0 5 10
x 

10

15

20

25

D
en

si
ty

2ndRoeLag

Figure: Result with 20 pairs of layers, 50 points for each pair.
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Isentropic homogeneous model (2x2 model)

Considering isentropic Euler equations corresponding to the
conservation of mass and momentum in Lagrangian
coordinates {

Vt − uξ = 0
ut + pξ = 0,

(4.1)

Relation V = V (p) for the mixture

V = Y1V10

( p + p∞,1
p10 + p∞,1

)− 1
γ1 + Y2V20

( p + p∞,2
p20 + p∞,2

)− 1
γ2 , (4.2)

where Y1 and Y2 are the mass fraction of each phase.
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3x3 system with turbulent energy

The system in Lagrangian form
Vt − uξ = 0,
ut + p̃ξ = 0,
εt + (up̃)ξ = 0,

(4.3)

where V = 1
ρ , ε = e + u2

2 + Vk , p̃ = p + 2k and e = Y1e1 + Y2e2
is the specific internal energy of the mixture,

e1 =
p + γ1p∞1L

γ1 − 1
V1, e2 =

p + γ2p∞2

γ2 − 1
V2. (4.4)

S. L. Gavrilyuk and R. Saurel. "Rankine-Hugoniot relations for shocks in
heterogeneous mixtures". In: Journal of Fluid Mechanics 575 (Mar. 2007),
pp. 495-507.
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Data for two cases

Case 1: ρ10/ρ20 = 2
Case 2: ρ10/ρ20 = 10

Reference data Case 1 Case 2
p10 10 10
ρ10 20 100

p∞,1 100 100
γ1 4.4 4.4

p20 10 10
ρ20 10 10

p∞,1 0 0
γ2 1.4 1.4

Table: Reference states of the multilayer tube
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Numerical results before shock formation
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Figure: Comparison between numerical solution of multi-fluid and
homogeneous models before shock formation for the case of density
ratio ρ10/ρ20 = 2 at time t = 1.3.
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Numerical results before shock formation
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Figure: Comparison between numerical solution of multi-fluid and
homogeneous models before shock formation for the case of density
ratio ρ10/ρ20 = 10 at time t = 2.5.
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Numerical results after shock formation
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Figure: Comparison between numerical solution of multi-fluid and
homogeneous models after shock formation for the case of density
ratio ρ10/ρ20 = 2 at time t = 1.3 (strong shock).
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Using Gaussian blurring to smooth out numerical solutions

Ui =
1
2

(Ui−1 + Ui+1). (5.1)
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Numerical results after shock formation
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Figure: Comparison between smoothed numerical solution of
multi-fluid and homogeneous models for the case of density ratio
ρ10/ρ20 = 2.
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Numerical results after shock formation
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Figure: Comparison between numerical solution of multi-fluid and
homogeneous models after shock formation for the case of density
ratio ρ10/ρ20 = 10 at time t = 2.5 (strong shock).
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Numerical results after shock formation
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Figure: Comparison between smoothed numerical solution of
multi-fluid and homogeneous models for the case density ratio
ρ10/ρ20 = 10.
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Riemann problem for multi-fluid

We consider the test with the following initial condition for the
pressure

p =

{
50, if x ≤ 5
10, if x > 5,

(5.2)

where x ∈ [0,10]. The initial velocity is zero everywhere and

the initial density satisfies ρ = ρ̄
(p + p∞

p̄ + p∞

) 1
γ . For the 3× 3

model k is also zero.
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Riemann problem for multi-fluid
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Figure: Comparison between detailed numerical solution of multi-fluid
and homogeneous models of Riemann problem (5.2) for the case of
density ratio ρ10/ρ20 = 2 at time t = 1.5.
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Riemann problem for multi-fluid
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Figure: Comparison between smoothed numerical solution of
multi-fluid and homogeneous models of Riemann problem (5.2) for
the case of density ratio ρ10/ρ20 = 2 at time t = 1.5.
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Riemann problem for multi-fluid

0 5 10
x 

0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

0 5 10
x 

10

20

30

40

50

P
re

ss
ur

e

t = 3, CFL = 0.9 , theta = 1.8

0 2 4 6 8 10

x 

0

0.2

0.4

0.6

0.8

1

1.2

k

0 5 10
x 

0

20

40

60

80

100

120

D
en

si
ty

NewRoeLag
2x2 system
3x3 system

Figure: Comparison between detailed numerical solution of multi-fluid
and homogeneous models of Riemann problem (5.2) for the case of
density ratio ρ10/ρ20 = 10 at time t = 3.
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Riemann problem for multi-fluid
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Figure: Comparison between smoothed numerical solution of
multi-fluid and homogeneous models of Riemann problem (5.2) for
the case of density ratio ρ10/ρ20 = 10 at time t = 3.
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Travelling shock - moderate density ratio

The initial condition of the travelling shock for 2× 2 system is{
pL = 40,uL = 0.9452, if 0 ≤ x ≤ 1
pR = 10,uR = 0, if 1 < x ≤ 10,

(5.3)

and the initial density satisfies ρ = ρ̄
(p + p∞

p̄ + p∞

) 1
γ .

At x = 10 we impose wall conditions : u = 0, ∂p/∂ξ = 0.
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Numerical results before hitting the wall
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Figure: Comparison between smoothed detailed numerical solution,
2× 2 system, 3× 3 system before hitting the wall for the case of
density ratio ρ10/ρ20 = 2 at time t = 2.5.
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Numerical results after hitting the wall

0 5 10
x 

0

0.2

0.4

0.6

0.8

1

V
el

oc
ity

0 5 10
x 

40

60

80

100

120

P
re

ss
ur

e

t = 5

0 2 4 6 8 10

x 

0

5

10

15

k

0 2 4 6 8 10

x 

20

25

30

35

D
en

si
ty

smoothed RoeLag
2x2 system
3x3 system

Figure: Comparison between smoothed detailed numerical solution,
2× 2 system, 3× 3 system after hitting the wall for the case of
density ratio ρ10/ρ20 = 2 at time t = 5.
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Travelling shock - big density ratio

The initial condition of the Riemann problem is{
pL = 40,uL = 0.5286, if x ≤ 1
pR = 10,uR = 0, if x > 1,

(5.4)

where x ∈ [0,10].

The initial density satisfies ρ = ρ̄
(p + p∞

p̄ + p∞

) 1
γ .
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Numerical results before hitting the wall
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Figure: Comparison between smoothed detailed numerical solution,
2× 2 system, 3× 3 system before hitting the wall for the case of
density ratio ρ10/ρ20 = 10 at time t = 5.
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Numerical results after hitting the wall
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Figure: Comparison between smoothed detailed numerical solution,
2× 2 system, 3× 3 system after hitting the wall for the case of
density ratio ρ10/ρ20 = 10 at time t = 9.5.
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Comparison of the computation time

Detailed computation 2× 2 system 3× 3 system
298.8 42.8 50.1

Table: Comparison of the computation time (seconds) among the
computations of the detailed numerical solution and the two
homogeneous models

Conclusion: It is much more expensive to perform the detailed
numerical simulation than to numerically solve the
homogeneous models.
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Discussion and conclusion

For smooth solutions (in pressure and velocity) the two
models are both in very good agreement with the detailed
numerical solution of multilayer Euler equations.
When a shock develops, the multilayer solution becomes
highly oscillatory and transforms to a dispersive shock for
large amplitude shocks.

For moderate density ratio, the 2× 2 model gives a better
prediction of the shock position.
For large density ratio, the turbulent 3× 3 model is in better
agreement with a smoothed out version of the detailed
numerical compared with the simple 2× 2 model.

Open problem: construction of non isentropic
homogenized models.
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Thank you for your attention!
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