PRIN 2017 Workshop on Innovative Numerical Methods for Evolutionary Partial Differential Equations and Applications (In memory of Maurizio)

> Stochastic Galerkin particle methods for kinetic equations with uncertainties

Lorenzo Pareschi

Department of Mathematics and Computer Science, University of Ferrara, Italy

February 20-22, 2023 — University of Catania

PRIN 2017: The research unit of Ferrara

Research group

L. Pareschi G. Dimarco W. Boscheri V. Caleffi A. Valiani G. Bertaglia Main research topics

- AP methods for kinetic equations (plasma, rarefied gases) [WP1, WP3]
- Semi-lagrangian IMEX schemes, all Mach flows [WP2, WP4]
- PDEs on networks (epidemiology, blood flows) [WP5]
- Mean-field optimization and optimal control [WP7]
- Uncertainty quantification [WP9]

Uncertainty quantification

Physical, biological, social, economic etc. systems often involve uncertainties which should be accounted for in the mathematical models describing these systems.

Reentry problem **Plasma fusion** Proposed Contains Traffic flow

Covid-19 Finance Collective behavior

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 3 / 29

Uncertainty quantification in PDEs

- Examples include uncertainty in the initial data, the boundary conditions, or in the modeling parameters like microscopic interactions, external forces, viscosity coefficient, . . .
- Need of constructing effective numerical methods for uncertain kinetic models and to analyze the new algorithms (Curse of dimensionality).
- Quantify uncertainties on some quantity of interest, like expected values and variance of moments.

Lorenzo Pareschi \sim Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties \sim 4 / 29

¹B.Peherstorfer, K.Willcox, M.Gunzburger, '18; G.Dimarco, L.P. '19-'20; L.Liu, L.P., X.Zhu '20-'22; ²S.Jin, J.Hu, L.Liu, R.Shu, Y.Zhu,, '16-'20; T.Xiao, M.Frank '21 ³S.Mishra, C.Schwab '12; B.Despres, B.Perthame '16; J.Hu, L.P., Y.Wang '21; J.Hu, S.Jin, J.Li, L.Zhang '22

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 5 / 29

Stochastic Galerkin particle methods

Main idea: combine accuracy of stochastic Galerkin methods in random space with efficiency of particle methods in phase space⁴.

Classical sG approach (left branch) based on finite differences/volumes versus sG particle approach (right branch).

⁴ J.Carrillo, L.P., M.Zanella '18; G. Poëtte '19; L.P., M.Zanella '21; A.Medaglia, L.P., M.Zanella '22

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 6 / 29

Kinetic models of plasmas with uncertainties

We consider the evolution of the plasma electrons at the kinetic level

$$
\frac{\partial f(x,v,t,z)}{\partial t} + v \cdot \nabla_x f(x,v,t,z) + E(x,t,z) \cdot \nabla_v f(x,v,t,z) = \frac{1}{\varepsilon} Q(f,f)(x,v,t,z).
$$

ε Knudsen number, $z \in \Omega$ random vector ~ $p(z)$, $E(x, t, z)$ self-consistent electric field

$$
E(x,t,z) = -\nabla_x \phi(x,t,z),
$$

where $\phi(x, t, z)$ is the potential, solution to the Poisson equation

$$
\Delta_x \phi(x,t,z) = 1 - \int_{\mathbb{R}^3} f(x,v,t,z) dv.
$$

 $Q(f, f)$ describes interactions between charged particles and is given by the Landau operator

$$
Q(f, f)(x, v, t, z) = \nabla_v \cdot \int_{\mathbb{R}^{d_v}} A(v - v_*, z) \left[\nabla_v f(v, z) f(v_*, z) - \nabla_{v_*} f(v_*, z) f(v, z) \right] dv_*,
$$

with $A(v - v_*, z)$ a $d_v \times d_v$ symmetric matrix characterizing the Coulombian interactions.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 7/29

Asymptotic behaviors

In the collisionless case $\varepsilon \to +\infty$ we recover the Vlasov-Poisson system.

In the fluid-limit $\varepsilon \to 0$ from $Q(f, f) = 0$ we obtain $f = \mathcal{M}_{o, UT}$ with

$$
\mathcal{M}_{\rho,U,T}(x,v,t,z) = \rho(x,t,z) \left(\frac{1}{2\pi T(x,t,z)} \right)^{\frac{d_v}{2}} \exp\left(-\frac{(v - U(x,t,z))^2}{2T(x,t,z)} \right),
$$

$$
\rho(x,t,z) = \int_{\mathbb{R}^{d_v}} f \, dv, \quad U(x,t,z) = \frac{1}{\rho} \int_{\mathbb{R}^{d_v}} f v \, dv, \quad T(x,t,z) = \frac{1}{d_v \rho} \int_{\mathbb{R}^{d_v}} f(v - U)^2 \, dv,
$$

the uncertain mass, momentum and temperature. Thus, defining

$$
W(x,t,z) = \rho(x,t,z) \left(\frac{|U(x,t,z)|^2}{2} + \frac{3T(x,t,z)}{2} \right), \quad p(x,t,z) = \rho(x,t,z)T(x,t,z),
$$

we recover the uncertain Euler-Poisson system

$$
\partial_t \rho + \nabla_x \cdot (\rho U) = 0
$$

$$
\partial_t (\rho U) + \nabla_x \cdot (\rho U \otimes U) + \nabla_x p = \rho \nabla_x \phi
$$

$$
\partial_t W + \nabla_x \cdot ((W + p) U) = \rho U \cdot \nabla_x \phi
$$

$$
\Delta_x \phi = \rho - 1.
$$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 8 / 29

Operator splitting approach

Denoting by $f^n(x, v, z)$ an approximation of $f(x, v, t^n, z)$, with $t^n = n \Delta t$, we solve separately

$$
(\mathcal{C}_{\Delta t})\begin{cases} \frac{\partial f^*}{\partial t} = \frac{1}{\varepsilon}Q(f^*, f^*),\\ f^*(x, v, 0, z) = f^n(x, v, z), \end{cases}
$$

an homogeneous collision process, and the Vlasov-Poisson system

$$
(\mathcal{T}_{\Delta t})\begin{cases} \frac{\partial f^{**}}{\partial t} + v \cdot \nabla_x f^{**} + E(x, t, z) \cdot \nabla_v f^{**} = 0, \\ f^{**}(x, v, 0, z) = f^*(x, v, \Delta t, z). \end{cases}
$$

The solution at the time t^{n+1} is therefore given by $f^{n+1}(x,v,z) = f^{**}(x,v,\Delta t,z)$. Higher order splitting techniques can be adopted, like the second order Strang splitting ⁵. In the sequel we consider the simplified case of a BGK collision term

$$
Q(f, f)(x, v, t, z) = \nu(\mathcal{M}_{\rho, U, T}(x, v, t, z) - f(x, v, t, z)),
$$

where $\nu > 0$ is the collision frequency.

⁵G. Strang '68

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 9/29

The particle method in absence of uncertainties

Monte Carlo method for the collision step

We rewrite the collision step as the explicit solution

$$
f^*(x,v) = \underbrace{\exp\left(-\nu \frac{\Delta t}{\varepsilon}\right)}_{\text{no collision}} f^n(x,v) + \underbrace{\left(1 - \exp\left(-\nu \frac{\Delta t}{\varepsilon}\right)\right)}_{\text{Maxwellian sampling}} \mathcal{M}_{\rho,U,T}(x,v) \, .
$$

Probabilistic interpretation: with probability $1-e^{-\nu\Delta t/\varepsilon}$ a particle's velocity is replaced with a Maxwellian ${\cal M}_{\rho,U,T}$ sample. The sampling is made conservative by the shift and scale technique⁶.

The macroscopic quantities
$$
\rho_{\ell}^n
$$
, u_{ℓ}^n and T_{ℓ}^n are reconstructed in the cell I_{ℓ} , $\ell = 1, ..., L$.
⁶L. Parsechi, S. Trazzi '05; D. Pullin '80

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 10 / 29

The particle method in absence of uncertainties

Particle in Cell method for the Vlasov-Poisson step⁷

The equations of motion of the particles are the following coupled set of ODEs

$$
\frac{dx_i(t)}{dt} = v_i(t), \qquad \frac{dv_i(t)}{dt} = E(x_i, t).
$$

Let $E^{n+1/2}_\ell$ be the electric field in the cell I_ℓ at time $t^{n+1/2}.$ The particle dynamic is solved on the $\frac{c}{\epsilon}$ computational domain through the following Verlet type scheme

$$
x_i^{n+1/2} = x_i^n + v_i^n \frac{\Delta t}{2},
$$

\n
$$
v_i^{n+1} = v_i^n + \Delta t \sum_{\ell=1}^{N_\ell} E_\ell^{n+1/2} \chi(x_i^{n+1/2} \in I_\ell),
$$

\n
$$
x_i^{n+1} = x_i^{n+1/2} + v_i^{n+1} \frac{\Delta t}{2}.
$$

The electric field is computed by solving the Poisson equation for the potential with a mesh based method on a uniform staggered grid with respect to the cells I_ℓ , $\ell = 1, \ldots, L$.

⁷E. Sonnendrücker '13; P. Degond, F. Deluzet, L. Navoret, A. Sun, M. Vignal '10; F. Filbet, L. Rodrigues '16

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 11 / 29

Stochastic Galerkin (sG) particle methods

We consider the uncertain particles dynamic $(x_i(t, z), v_i(t, z))$, $i = 1, ..., N$ at time t with $z \sim p(z)$, one-dimensional random variable.

Approximate uncertain position and velocities by generalized polynomial chaos (gPC) expansions⁸

$$
x_i(t, z) \approx x_i^M(t, z) = \sum_{h=0}^M \hat{x}_{i,h}(t) \Psi_h(z), \qquad v_i(t, z) \approx v_i^M(t, z) = \sum_{h=0}^M \hat{v}_{i,h}(t) \Psi_h(z),
$$

 $\{\Psi_h(z)\}_{h=0}^M$ set of polynomials of degree $\leq M$, orthonormal with respect to $p(z).$

⁸N. Wiener '38; D.Xiu, G. Karniadakis '02; J. Carrillo, L. Pareschi, M. Zanella '18, A. Medaglia, L. Pareschi, M. Zanella '22

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 12 / 29

The sG particle projection

By orthogonality

$$
\int_{\Omega} \Psi_h(z) \Psi_k(z) p(z) dz = \mathbb{E}_z [\Psi_h(\cdot) \Psi_k(\cdot)] = \delta_{hk},
$$

 $\Omega\subseteq\mathbb{R}^d$ and δ_{hk} is the Kronecker delta.

The coefficients $\hat{x}_{i,h}(t)$ and $\hat{v}_{i,h}(t)$ are projections in the space of polynomials of degree $h \geq 0$

$$
\hat{x}_{i,h} = \int_{\Omega} x_i(z) \Psi_h(z) p(z) dz = \mathbb{E}_z[x_i^n(\cdot) \Psi_h(\cdot)], \quad \hat{v}_{i,h} = \int_{\Omega} v_i(z) \Psi_h(z) p(z) dz = \mathbb{E}_z[v_i^n(\cdot) \Psi_h(\cdot)].
$$

Let $H^r(\Omega)$ be a weighted Sobolev space

$$
H^{r}(\Omega) = \left\{ u : \Omega \to \mathbb{R} : \frac{\partial^{k} u}{\partial z^{k}} \in L^{2}(\Omega), 0 \leq k \leq r \right\}.
$$

Lemma (Spectral accuracy)

For any $u(z) \in H^r(\Omega)$, $r \geq 0$, there exists a constant C independent of $M > 0$ such that

$$
||u - u^M||_{L^2(\Omega)} \le \frac{C}{M^r} ||u||_{H^r(\Omega)},
$$

sG particle method for plasmas

sG collision step

Rewrite the Monte Carlo method in compact form to insert the gPC expansions $x_i^{M,n}(z)$, $v_i^{M,n}(z)$

$$
v_i^{M, n+1}(z) = \chi\left(\xi < e^{-\nu \frac{\Delta t}{\varepsilon}}\right) v_i^{M, n}(z) + \left(1 - \chi\left(\xi < e^{-\nu \frac{\Delta t}{\varepsilon}}\right)\right) \sum_{\ell=1}^L \chi\left(x_i^{M, n}(z) \in I_\ell\right) \tilde{v}_\ell^M(z)
$$

 $\chi(\cdot)$ is the indicator function, $\xi \sim \mathcal{U}([0,1])$ and $\tilde{v}^M_\ell(z)$ a sample from $\mathcal{M}_{\rho_\ell^{M,n}(z),U_\ell^{M,n}(z),T_\ell^{M,n}(z)}$ Projecting the above equation for each $h = 0, \ldots, M$ we get

$$
\hat{v}_{i,h}^{n+1} = \chi \left(\xi < e^{-\nu \frac{\Delta t}{\varepsilon}} \right) \hat{v}_{i,h}^n + \left(1 - \chi \left(\xi < e^{-\nu \frac{\Delta t}{\varepsilon}} \right) \right) \sum_{\ell=1}^L \hat{W}(t^n)_{i,h}^\ell
$$
\n
$$
\hat{W}(t^n)_{i,h}^\ell = \int_{\Omega} \chi \left(x_i^{M,n}(z) \in I_\ell \right) \tilde{v}_\ell^M(z) \Psi_h(z) p(z) dz,
$$

and the above integral is computed through Gaussian quadrature with M nodes.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 14 / 29

sG particle method for plasmas

sG Vlasov-Poisson step

The gPC expansion of the particles' systems $x_i^M(t,z),\,v_i^M(t,z)$ is solution to

$$
\frac{dx_i^M(t,z)}{dt}=v_i^M(t,z),\qquad \frac{dv_i^M(t,z)}{dt}=E^M(x_i^M,t,z).
$$

Hence, we project the latter set of ODEs in the linear space $\{\Psi_h(z)\}_{h=0}^M$ to obtain

$$
\frac{d\hat{x}_{i,h}(t)}{dt} = \hat{v}_{i,h}(t), \qquad \frac{d\hat{v}_{i,h}(t)}{dt} = \int_{\Omega} E^M(x_i^M, t, z) \Psi_h(z) p(z) dz.
$$

The projected time discretized scheme then reads

$$
\begin{aligned}\n\hat{x}_{i,h}^{n+1/2} &= \hat{x}_{i,h}^n + \hat{v}_{i,h}^n \Delta t/2, \\
\hat{v}_{i,h}^{n+1} &= \hat{v}_{i,h}^n + \Delta t \sum_{\ell=1}^{N_\ell} \int_{\Omega} E_{\ell}^{n+1/2,M}(z) \chi(x_i^{n+1/2,M}(z) \in I_\ell) \Psi_h(z) p(z) dz, \\
\hat{x}_{i,h}^{n+1} &= \hat{x}_{i,h}^{n+1/2} + \hat{v}_{i,h}^{n+1} \Delta t/2.\n\end{aligned}
$$

The electric field needs to be calculated for every Gaussian node used in the quadrature.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 15 / 29

Error estimate on moments

Neglecting for simplicity space dependence, given a function $f(z, v, t)$ approximated by samples, its empirical measure and the sG empirical measure are

$$
f^{N}(z, v, t) = \frac{1}{N} \sum_{i=1}^{N} \delta(v - v_{i}(z, t)), \qquad f_{M}^{N}(z, v, t) = \frac{1}{N} \sum_{i=1}^{N} \delta(v - v_{i}^{M}(z, t)).
$$

For any a test function φ , if we denote by

$$
\langle \varphi, f \rangle (z, t) := \int_{\mathbb{R}^d} f(z, v, t) \varphi(v) dv,
$$

$$
\langle \varphi, f^N \rangle (z, t) = \frac{1}{N} \sum_{i=1}^N \varphi(v_i(z, t)), \qquad \langle \varphi, f_M^N \rangle (z, t) = \frac{1}{N} \sum_{i=1}^N \varphi(v_i^M(z, t)).
$$

Assuming $\int_{\R^d} f(z,v,t)\,dv=1$, then $\langle\varphi,f\rangle(z,t)$ is the expectation of φ with respect to f , that we denote as $\mathbb{E}_V[\varphi](z).$ Similarly, we denote by $\sigma_\varphi^2(z)=\text{Var}_V(\varphi)(z)$ its variance with respect to $f.$

we have

For a random variable $V(z,t)$ taking values in $L^2(\Omega)$ we define

$$
||V||_{L^{2}(\mathbb{R}^{d_v};L^{2}(\Omega))} = \mathbb{E}_V [||V||_{L^{2}(\Omega)}^{2}]^{1/2}.
$$

For each $z \in \Omega$, $\langle \varphi, f^N \rangle (z, t)$ is the sum of N random variables $\varphi(v_1(z, t)), \ldots, \varphi(v_N(z, t))$ with $v_1(z, t), \ldots, v_N(z, t)$ i.i.d. as $f(z, v, t)$.

We have the following consistency estimate ⁹

Theorem

Let $f(z,v,t)$ a probability density function in v at time $t\geq 0$ and $f_M^N(z,v,t)$ the empirical measure of the N -particles sG approximation with M projections associated to the samples $\{v_1(z,t),\ldots,v_N(z,t)\}$. Provided that $v_i(z,t)\in H^r(\Omega)$ for all $i=1,\ldots,N$, we have

$$
\|\langle \varphi, f \rangle - \langle \varphi, f_M^N \rangle\|_{L^2(\mathbb{R}^{d_v}; L^2(\Omega))} \le \frac{\|\sigma_{\varphi}\|_{L^2(\Omega)}}{N^{1/2}} + \frac{C}{M^r} \left(\frac{1}{N} \sum_{i=1}^N \|\nabla \varphi(\xi_i)\|_{L^2(\Omega)} \right),
$$

where φ is a test function, $C>0$ is a constant independent on M , $\xi_i=(1-\theta)v_i+\theta v_i^M$, $\theta\in(0,1).$

⁹L.P., M. Zanella '19

Test 1: spectral convergence

 L^2 error of the sG particle scheme in the collisionless case $N=10^6,$ $\Delta t=0.1$ and a reference solution with $M=30.$ We choose a random initial temperature $T(z)=\frac{4}{5}+\frac{2}{5}z$, $z\sim \mathcal{U}([0,1])$ and initial data

$$
f_0(x, v, z) = \rho(x) \frac{1}{\sqrt{2\pi T(z)}} e^{-\frac{v^2}{2T(z)}}, \quad \rho(x) = \frac{1}{\sqrt{\pi}} e^{-(x-6)^2}, \quad x \in [0, 4\pi]
$$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 18 / 29

Test 2: Landau damping

We consider a wave perturbation of the local Maxwellian distribution. If the perturbation is small, we are in the so-called linear Landau damping regime, if the wave amplitude increases, we get the nonlinear Landau damping regime.

Initial data is an uncertain perturbation of the local equilibrium

$$
f_0(x, v, z) = (1 + \alpha(z) \cos(\kappa x)) \frac{1}{\sqrt{2\pi}} e^{-\frac{v^2}{2}},
$$

with $x \in [0, 2\pi/k]$, $v \in [-6, 6]$, κ the wave number and $\alpha(z)$ small random perturbation. The L^2 -norm of the electric field

$$
\mathcal{E}(t,z) = \left(\int_{\mathbb{R}^3} |E(x,t,z)|^2 dx\right)^{\frac{1}{2}}
$$

decays at a specific damping rate γ . In the collisionless case we have explicit expressions for γ in the linear case, and of the damping and growth rates γ_d and γ_g in the nonlinear case 10 .

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 19 / 29

¹⁰F.F.Chen, '74, F.Filbet, T.Xiong '22

Linear Landau damping $(\alpha(z) \sim \mathcal{U}([0.05, 0.15]))$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 20 / 29

Nonlinear Landau damping $(\alpha(z) \sim \mathcal{U}([0.4, 0.6]))$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 21 / 29

Test 3: Two stream instability

For the two stream instability we consider the initial distribution¹¹

$$
f_0(x, v, z) = (1 + \alpha(z) \cos(\kappa x)) \frac{1}{2\sqrt{2\pi T}} \left(e^{-\frac{(v - \bar{v})^2}{2T}} + e^{-\frac{(v + \bar{v})^2}{2T}} \right).
$$

We take $x \in [0, 2\pi/k]$ and $v \in [-L_v, L_v]$, with $L_v = 6$.

- To observe the linear two stream instability we take $\bar{v} = 2.4$, $T = 1$, a wave number $\kappa = 0.2$. In the collisionless scenario, if the random perturbation is small, after a certain amount of time the logarithm of the L 2 -norm of the electric energy grows linearly with a specific rate γ .
- In the nonlinear two stream instability we choose $\bar{v} = 0.99, T = 0.3$, a wave number $\kappa = 2/13$. In this case due to the effect of collisions the instabilities disappear.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 23 / 29

 11 F.Filbet, E.Sonnendrücker '01

Linear two stream instability $(\alpha(z) \sim \mathcal{U}([0.003, 0.007]))$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 24 / 29

Nonlinear two stream instability $(\alpha(z) \sim \mathcal{U}([0.04, 0.06]))$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 25 / 29

Nonlinear two stream instability $(\varepsilon = 1)$

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 26 / 29

Test 4: Sod shock tube (uncertain temperature, $\varepsilon = 10^{-3}$)

Sod shock tube with uncertain initial temperature $T_0(x, z) = 1 + z/4$, $z \sim \mathcal{U}([0, 1])$. The particle sG solution is computed with $N=10^7,~M=5$ and $\Delta t=0.01.$ Euler-Poisson: Lax-Friedrichs is solved with 1500 cells, WENO with 200 cells and stochastic collocation with 11 nodes.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 27 / 29

Test 4: Sod shock tube (uncertain interface, $\varepsilon = 10^{-3}$)

Sod shock tube with uncertain initial shock position $x_* = 0.5 + \alpha(z)$, $\alpha(z) = -0.05 + 0.1z$, $z \sim \mathcal{U}([0, 1])$. The particle sG solution is computed with $N=10^7,~M=5$ and $\Delta t=0.01.$ Euler-Poisson: Lax-Friedrichs is solved with 1500 cells, WENO with 200 cells and stochastic collocation with 11 nodes.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 28 / 29

Concluding remarks

- Stochastic Galerkin (sG) particle methods combine an efficient particle solver in the physical space with an accurate sG method in the random space.
- For smooth solutions in the random space, very few modes are sufficient to match the particle accuracy in the physical space $(M \ll N)$.
- They preserve the main properties of the solution such as physical conservations and non negativity and avoid loss of hyperbolicity of sG methods for systems of conservation laws.
- Some research directions involve
	- inclusion of Landau collision effects 12
	- study of the convergence properties
	- inclusion of the magnetic field
	- analysis of the boundary conditions
	- \bullet ...

¹²A. Medaglia, L.P., M. Zanella '23