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Main research topics

• AP methods for kinetic equations (plasma, rarefied gases) [WP1, WP3]

• Semi-lagrangian IMEX schemes, all Mach flows [WP2, WP4]

• PDEs on networks (epidemiology, blood flows) [WP5]

• Mean-field optimization and optimal control [WP7]

• Uncertainty quantification [WP9]
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Uncertainty quantification

Physical, biological, social, economic etc. systems often involve uncertainties which should be
accounted for in the mathematical models describing these systems.

Reentry problem Plasma fusion Traffic flow

Covid-19 Finance Collective behavior
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Uncertainty quantification in PDEs

Statistics about

uncertain inputs

Ut+F (U)x=R(U)

PDE/Kinetic model

Uncertain solution

of the model and

post-processing

Statistics about

uncertain outputs

• Examples include uncertainty in the initial data, the boundary conditions, or in the modeling

parameters like microscopic interactions, external forces, viscosity coefficient, . . .

• Need of constructing effective numerical methods for uncertain kinetic models and to analyze

the new algorithms (Curse of dimensionality).

• Quantify uncertainties on some quantity of interest, like expected values and variance of

moments.
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Uncertainty quantification approaches

Multifidelity accelerate Monte Carlo sampling using different fidelity models1.

Model dependent but very efficient (non-intrusive) for high

dimensional random spaces. Properties of the underlying solver.

Stochastic Galerkin (sG) generalized polynomial chaos (gPC) expansions in the random

space and deterministic methods in physical space2. Spectral

accuracy, high cost (intrusive), loss of physics, hyperbolicity.

Other methods designed for uncertainty quantification, like Moment methods,

Kinetic polynomials, Multilevel Monte Carlo methods, . . .3

1B.Peherstorfer, K.Willcox, M.Gunzburger, ’18; G.Dimarco, L.P. ’19-’20; L.Liu, L.P., X.Zhu ’20-’22;
2S.Jin, J.Hu, L.Liu, R.Shu, Y.Zhu, ...., ’16-’20; T.Xiao, M.Frank ’21
3S.Mishra, C.Schwab ’12; B.Despres, B.Perthame ’16; J.Hu, L.P., Y.Wang ’21; J.Hu, S.Jin, J.Li, L.Zhang ’22
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Stochastic Galerkin particle methods

Main idea: combine accuracy of stochastic Galerkin methods in random space with efficiency of
particle methods in phase space4.

Classical sG approach (left branch) based on finite differences/volumes versus sG particle approach (right branch).

4J.Carrillo, L.P., M.Zanella ’18; G. Poëtte ’19; L.P., M.Zanella ’21; A.Medaglia, L.P., M.Zanella ’22
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Kinetic models of plasmas with uncertainties

We consider the evolution of the plasma electrons at the kinetic level

∂f(x, v, t, z)

∂t
+ v · ∇xf(x, v, t, z) + E(x, t, z) · ∇vf(x, v, t, z) =

1

ε
Q(f, f)(x, v, t, z).

ε Knudsen number, z ∈ Ω random vector ∼ p(z), E(x, t, z) self-consistent electric field

E(x, t, z) = −∇xφ(x, t, z),

where φ(x, t, z) is the potential, solution to the Poisson equation

∆xφ(x, t, z) = 1−
∫
R3

f(x, v, t, z)dv.

Q(f, f) describes interactions between charged particles and is given by the Landau operator

Q(f, f)(x, v, t, z) = ∇v ·
∫
Rdv

A(v − v∗, z) [∇vf(v, z)f(v∗, z)−∇v∗f(v∗, z)f(v, z)] dv∗,

with A(v − v∗, z) a dv × dv symmetric matrix characterizing the Coulombian interactions.
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Asymptotic behaviors

In the collisionless case ε→ +∞ we recover the Vlasov-Poisson system.

In the fluid-limit ε→ 0 from Q(f, f) = 0 we obtain f =Mρ,U,T with

Mρ,U,T (x, v, t, z) = ρ(x, t, z)

Å
1

2πT (x, t, z)

ã dv
2

exp

Å
− (v − U(x, t, z))2

2T (x, t, z)

ã
,

ρ(x, t, z) =

∫
Rdv

f dv, U(x, t, z) =
1

ρ

∫
Rdv

fv dv, T (x, t, z) =
1

dvρ

∫
Rdv

f(v − U)2 dv,

the uncertain mass, momentum and temperature. Thus, defining

W (x, t, z) = ρ(x, t, z)

Å |U(x, t, z)|2

2
+

3T (x, t, z)

2

ã
, p(x, t, z) = ρ(x, t, z)T (x, t, z),

we recover the uncertain Euler-Poisson system

∂tρ+∇x · (ρU) = 0

∂t (ρU) +∇x · (ρU ⊗ U) +∇xp = ρ∇xφ
∂tW +∇x · ((W + p)U) = ρU · ∇xφ

∆xφ = ρ− 1.
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Operator splitting approach

Denoting by fn(x, v, z) an approximation of f(x, v, tn, z), with tn = n∆t, we solve separately

(C∆t)


∂f∗

∂t
=

1

ε
Q(f∗, f∗),

f∗(x, v, 0, z) = fn(x, v, z),

an homogeneous collision process, and the Vlasov-Poisson system

(T∆t)


∂f∗∗

∂t
+ v · ∇xf∗∗ + E(x, t, z) · ∇vf∗∗ = 0,

f∗∗(x, v, 0, z) = f∗(x, v,∆t, z).

The solution at the time tn+1 is therefore given by fn+1(x, v, z) = f∗∗(x, v,∆t, z).

Higher order splitting techniques can be adopted, like the second order Strang splitting 5.

In the sequel we consider the simplified case of a BGK collision term

Q(f, f)(x, v, t, z) = ν(Mρ,U,T (x, v, t, z)− f(x, v, t, z)),

where ν > 0 is the collision frequency.
5G. Strang ’68
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The particle method in absence of uncertainties

Monte Carlo method for the collision step

We rewrite the collision step as the explicit solution

f∗(x, v) = exp

Å
−ν∆t

ε

ã
fn(x, v)︸ ︷︷ ︸

no collision

+

Å
1− exp

Å
−ν∆t

ε

ãã
Mρ,U,T (x, v)︸ ︷︷ ︸

Maxwellian sampling

.

Probabilistic interpretation: with probability 1− e−ν∆t/ε a particle’s velocity is replaced with a
Maxwellian Mρ,U,T sample. The sampling is made conservative by the shift and scale technique6.

The macroscopic quantities ρn` , un` and Tn` are reconstructed in the cell I`, ` = 1, . . . , L.
6L. Pareschi, S. Trazzi ’05; D. Pullin ’80

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 10 / 29



The particle method in absence of uncertainties

Particle in Cell method for the Vlasov-Poisson step7

The equations of motion of the particles are the following coupled set of ODEs

dxi(t)

dt
= vi(t),

dvi(t)

dt
= E(xi, t).

Let E
n+1/2
` be the electric field in the cell I` at time tn+1/2. The particle dynamic is solved on the

computational domain through the following Verlet type scheme

x
n+1/2
i = xni + vni

∆t

2
,

vn+1
i = vni + ∆t

N∑̀
`=1

E
n+1/2
` χ(x

n+1/2
i ∈ I`),

xn+1
i = x

n+1/2
i + vn+1

i

∆t

2
.

The electric field is computed by solving the Poisson equation for the potential with a mesh based
method on a uniform staggered grid with respect to the cells I`, ` = 1, . . . , L.

7E. Sonnendrücker ’13; P. Degond, F. Deluzet, L. Navoret, A. Sun, M. Vignal ’10; F. Filbet, L. Rodrigues ’16
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Stochastic Galerkin (sG) particle methods
We consider the uncertain particles dynamic (xi(t, z), vi(t, z)), i = 1, . . . , N at time t with
z ∼ p(z), one-dimensional random variable.

Approximate uncertain position and velocities by generalized polynomial chaos (gPC) expansions8

xi(t, z) ≈ xMi (t, z) =

M∑
h=0

x̂i,h(t)Ψh(z), vi(t, z) ≈ vMi (t, z) =

M∑
h=0

v̂i,h(t)Ψh(z),

{Ψh(z)}Mh=0 set of polynomials of degree ≤M , orthonormal with respect to p(z).

8N. Wiener ’38; D.Xiu, G. Karniadakis ’02; J. Carrillo, L. Pareschi, M. Zanella ’18, A. Medaglia, L. Pareschi, M.
Zanella ’22
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The sG particle projection

By orthogonality ∫
Ω

Ψh(z)Ψk(z)p(z)dz = Ez[Ψh(·)Ψk(·)] = δhk,

Ω ⊆ Rd and δhk is the Kronecker delta.

The coefficients x̂i,h(t) and v̂i,h(t) are projections in the space of polynomials of degree h ≥ 0

x̂i,h =

∫
Ω

xi(z)Ψh(z)p(z)dz = Ez[xni (·)Ψh(·)], v̂i,h =

∫
Ω

vi(z)Ψh(z)p(z)dz = Ez[vni (·)Ψh(·)].

Let Hr(Ω) be a weighted Sobolev space

Hr(Ω) =

®
u : Ω→ R :

∂ku

∂zk
∈ L2(Ω), 0 ≤ k ≤ r

´
.

Lemma (Spectral accuracy)

For any u(z) ∈ Hr(Ω), r ≥ 0, there exists a constant C independent of M > 0 such that

‖u− uM‖L2(Ω) ≤
C

Mr
‖u‖Hr(Ω),
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sG particle method for plasmas

sG collision step

Rewrite the Monte Carlo method in compact form to insert the gPC expansions xM,n
i (z), vM,n

i (z)

vM,n+1
i (z) = χ

Ä
ξ < e−ν

∆t
ε

ä
vM,n
i (z) +

Ä
1− χ

Ä
ξ < e−ν

∆t
ε

ää L∑
`=1

χ
Ä
xM,n
i (z) ∈ I`

ä
ṽM` (z)

χ(·) is the indicator function, ξ ∼ U([0, 1]) and ṽM` (z) a sample from MρM,n
` (z),UM,n

` (z),TM,n
` (z).

Projecting the above equation for each h = 0, . . . ,M we get

v̂n+1
i,h = χ

Ä
ξ < e−ν

∆t
ε

ä
v̂ni,h +

Ä
1− χ

Ä
ξ < e−ν

∆t
ε

ää L∑
`=1

Ŵ (tn)`i,h

Ŵ (tn)`i,h =

∫
Ω

χ
Ä
xM,n
i (z) ∈ I`

ä
ṽM` (z)Ψh(z)p(z)dz,

and the above integral is computed through Gaussian quadrature with M nodes.
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sG particle method for plasmas

sG Vlasov-Poisson step

The gPC expansion of the particles’ systems xMi (t, z), vMi (t, z) is solution to

dxMi (t, z)

dt
= vMi (t, z),

dvMi (t, z)

dt
= EM (xMi , t, z).

Hence, we project the latter set of ODEs in the linear space {Ψh(z)}Mh=0 to obtain

dx̂i,h(t)

dt
= v̂i,h(t),

dv̂i,h(t)

dt
=

∫
Ω

EM (xMi , t, z)Ψh(z)p(z)dz.

The projected time discretized scheme then reads

x̂
n+1/2
i,h = x̂ni,h + v̂ni,h∆t/2,

v̂n+1
i,h = v̂ni,h + ∆t

N∑̀
`=1

∫
Ω

E
n+1/2,M
` (z)χ(x

n+1/2,M
i (z) ∈ I`)Ψh(z)p(z)dz,

x̂n+1
i,h = x̂

n+1/2
i,h + v̂n+1

i,h ∆t/2.

The electric field needs to be calculated for every Gaussian node used in the quadrature.
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Error estimate on moments

Neglecting for simplicity space dependence, given a function f(z, v, t) approximated by samples, its

empirical measure and the sG empirical measure are

fN (z, v, t) =
1

N

N∑
i=1

δ(v − vi(z, t)), fNM (z, v, t) =
1

N

N∑
i=1

δ(v − vMi (z, t)).

For any a test function ϕ, if we denote by

〈ϕ, f〉(z, t) :=

∫
Rd

f(z, v, t)ϕ(v) dv,

we have

〈ϕ, fN 〉(z, t) =
1

N

N∑
i=1

ϕ(vi(z, t)), 〈ϕ, fNM 〉(z, t) =
1

N

N∑
i=1

ϕ(vMi (z, t)).

Assuming
∫
Rd f(z, v, t) dv = 1, then 〈ϕ, f〉(z, t) is the expectation of ϕ with respect to f , that we

denote as EV [ϕ](z). Similarly, we denote by σ2
ϕ(z) = VarV (ϕ)(z) its variance with respect to f .

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 16 / 29



For a random variable V (z, t) taking values in L2(Ω) we define

‖V ‖L2(Rdv ;L2(Ω)) = EV
î
‖V ‖2L2(Ω)

ó1/2
.

For each z ∈ Ω, 〈ϕ, fN 〉(z, t) is the sum of N random variables ϕ(v1(z, t)), . . . , ϕ(vN (z, t)) with
v1(z, t), . . . , vN (z, t) i.i.d. as f(z, v, t).

We have the following consistency estimate 9

Theorem

Let f(z, v, t) a probability density function in v at time t ≥ 0 and fNM (z, v, t) the empirical measure
of the N -particles sG approximation with M projections associated to the samples
{v1(z, t), . . . , vN (z, t)}. Provided that vi(z, t) ∈ Hr(Ω) for all i = 1, . . . , N , we have

‖〈ϕ, f〉 − 〈ϕ, fNM 〉‖L2(Rdv ;L2(Ω)) ≤
‖σϕ‖L2(Ω)

N1/2
+

C

Mr

(
1

N

N∑
i=1

‖∇ϕ(ξi)‖L2(Ω)

)
,

where ϕ is a test function, C > 0 is a constant independent on M , ξi = (1− θ)vi+ θvMi , θ ∈ (0, 1).

9L.P., M. Zanella ’19
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Test 1: spectral convergence

0 2 4 6 8 10

M

10-16

10-14

10-12

10-10

10-8

10-6

10-4

E
rr

o
r

L2 error of the sG particle scheme in the collisionless case N = 106, ∆t = 0.1 and a reference solution with
M = 30. We choose a random initial temperature T (z) = 4

5
+ 2

5
z, z ∼ U([0, 1]) and initial data

f0(x, v, z) = ρ(x)
1√

2πT (z)
e
− v2

2T (z) , ρ(x) =
1√
π
e−(x−6)2 , x ∈ [0, 4π]
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Test 2: Landau damping

We consider a wave perturbation of the local Maxwellian distribution. If the perturbation is small,
we are in the so-called linear Landau damping regime, if the wave amplitude increases, we get the
nonlinear Landau damping regime.

Initial data is an uncertain perturbation of the local equilibrium

f0(x, v, z) = (1 + α(z) cos(κx))
1√
2π
e−

v2

2 ,

with x ∈ [0, 2π/k], v ∈ [−6, 6], κ the wave number and α(z) small random perturbation.

The L2-norm of the electric field

E(t, z) =

Å∫
R3

|E(x, t, z)|2dx
ã 1

2

decays at a specific damping rate γ. In the collisionless case we have explicit expressions for γ in

the linear case, and of the damping and growth rates γd and γg in the nonlinear case10.

10F.F.Chen, ’74, F.Filbet, T.Xiong ’22
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Linear Landau damping (α(z) ∼ U([0.05, 0.15]))
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lin_damp_epsi_inf.mp4
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Nonlinear Landau damping (α(z) ∼ U([0.4, 0.6]))
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Logarithm of Ez[E(t, z)]. Linear (top) and nonlinear (bottom) Landau damping. From left to right:
ε = +∞, ε = 1, ε = 10−3. The wave number is κ = 0.5. For ε = +∞ we have γ = −0.1533 (linear) and
γd = −0.2920, γg = 0.0815 (nonlinear). Here N = 107, M = 5, ∆t = 0.1.
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Test 3: Two stream instability

For the two stream instability we consider the initial distribution11

f0(x, v, z) = (1 + α(z) cos(κx))
1

2
√

2πT

Å
e−

(v−v̄)2

2T + e−
(v+v̄)2

2T

ã
.

We take x ∈ [0, 2π/k] and v ∈ [−Lv, Lv], with Lv = 6.

• To observe the linear two stream instability we take v̄ = 2.4, T = 1, a wave number κ = 0.2.

In the collisionless scenario, if the random perturbation is small, after a certain amount of

time the logarithm of the L2-norm of the electric energy grows linearly with a specific rate γ.

• In the nonlinear two stream instability we choose v̄ = 0.99, T = 0.3, a wave number

κ = 2/13. In this case due to the effect of collisions the instabilities disappear.

11F.Filbet, E.Sonnendrücker ’01
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Linear two stream instability (α(z) ∼ U([0.003, 0.007]))
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linear_two_stream_epsi_inf.mp4
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Nonlinear two stream instability (α(z) ∼ U([0.04, 0.06]))
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non_linear_two_stream_epsi_inf.mp4
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Nonlinear two stream instability (ε = 1)
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non_linear_two_stream_epsi_1.mp4
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Test 4: Sod shock tube (uncertain temperature, ε = 10−3)
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Sod shock tube with uncertain initial temperature T0(x, z) = 1 + z/4, z ∼ U([0, 1]). The particle sG
solution is computed with N = 107, M = 5 and ∆t = 0.01. Euler-Poisson: Lax-Friedrichs is solved with
1500 cells, WENO with 200 cells and stochastic collocation with 11 nodes.
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Test 4: Sod shock tube (uncertain interface, ε = 10−3)
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Sod shock tube with uncertain initial shock position x∗ = 0.5 + α(z), α(z) = −0.05 + 0.1z, z ∼ U([0, 1]).
The particle sG solution is computed with N = 107, M = 5 and ∆t = 0.01. Euler-Poisson: Lax-Friedrichs
is solved with 1500 cells, WENO with 200 cells and stochastic collocation with 11 nodes.

Lorenzo Pareschi Stochastic Galerkin particle methods for multiscale collisional plasmas with uncertainties 28 / 29



Concluding remarks

• Stochastic Galerkin (sG) particle methods combine an efficient particle solver in the physical
space with an accurate sG method in the random space.

• For smooth solutions in the random space, very few modes are sufficient to match the particle
accuracy in the physical space (M � N).

• They preserve the main properties of the solution such as physical conservations and non
negativity and avoid loss of hyperbolicity of sG methods for systems of conservation laws.

• Some research directions involve

• inclusion of Landau collision effects12

• study of the convergence properties
• inclusion of the magnetic field
• analysis of the boundary conditions
• . . .

12A. Medaglia, L.P., M. Zanella ’23
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