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Introduction

Let us consider an initial value problem (IVP){
y′(t) = f

(
y(t)
)
, t ∈ [t0,T],

y(t0) = y0.

where f : Rm → Rm .

The usual General linear methods (GLMs) formulation is
Y [n]

i = h
s∑

j=1

aijf (Y
[n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]i = h
s∑

j=1

bijf (Y
[n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

n = 1, 2, . . . ,N, where Nh = T − t0.
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General Linear Methods
Y [n]

i = h
s∑

j=1

aijf (Y
[n]
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uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]i = h
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j=1

bijf (Y
[n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

for n = 1, 2, . . . ,N, where Nh = T − t0.

Internal stages:

Y [n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , s,

External stages:

y[n]i =

p∑
k=0

qikhky(k)(tn) + O(hp+1), i = 1, 2, . . . , r.
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General Linear Methods - Matrix Form

Set

Y [n] =


Y [n]

1
...

Y [n]
s

 ∈ Rsm, F[n] =


F[n]

1
...

F[n]
s

 ∈ Rsm, y[n] =


y[n]1

...

y[n]r

 ∈ Rrm,

GLMs can be written in matrix form as[
Y [n]

y[n]

]
=

[
A⊗ I U⊗ I

B⊗ I V⊗ I

][
hf (Y [n])

y[n−1]

]
.
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Runge–Kutta represented as GLMs


Yi = yn + h

s∑
j=1

aijf (Yj), i = 1, 2, . . . , s,

yn+1 = yn + h
s∑

j=1

bjf (Yj)

[
A U

B V

]
=


a11 · · · a1s 1

...
. . .

...
...

as1 · · · ass 1

b1 · · · bs 1


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Linear Multistep Methods represented as GLMs

yn =

k∑
j=1

αjyn−j + h
k∑

j=0

βjf (yn−j)

[
A U

B V

]
=



β0 0 0 0 . . . 0 1

αkβ0 + βk 0 0 0 . . . 0 αk

αk−1β0 + βk−1 1 0 0 . . . 0 αk−1

αk−2β0 + βk−2 0 1 0 . . . 0 αk−2
...

...
...

. . . . . .
...

...

α2β0 + β2 0 0 0 . . . 0 α2

α1β0 + β1 0 0 0 . . . 1 α1


,

J.C. Butcher and A.T. Hill, BIT, 2006.
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BDF represented as GLMs

k∑
j=0

αjyn+j = hβkf (yn+k)

[
A U

B V

]
=



βk −αk−1 −αk−2 · · · −α1 −α0

βk −αk−1 −αk−2 · · · −α1 −α0

0 1 0 · · · 0 0

0
...

...
. . .

...
...

0 0 0 · · · 0 0

0 0 0 · · · 1 0


,
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GLMs as framework to analyze and generalize

We can use general linear methods as a framework to analyze and generalize
existing classes of numerical methods.

Example:

Modified Extended Backward Differentiation Formulae

⇓

Generalized Linear Multistep Methods

[1] G.Izzo, Z.Jackiewicz, Generalized linear multistep methods for ordinary
differential equations, Applied Numerical Mathematics 114 (2017)
165–178.
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Extended Backward Differentiation Formulae

Consider the classical BDF method

k∑
j=0

αjyn+j = hβkfn+k

+hβk+1fn+k+1,

where fn+k = f (tn+k, yn+k),

fn+k+1 = f (tn+k+1, yn+k+1).

Based on the idea of using an approximation of the solution at a future
point tn+k+1.

It is needed to have a suitable estimation of yn+k+1.
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Extended Backward Differentiation Formulae

(i) Compute yn+k as the solution of the conventional BDF method

yn+k +

k−1∑
j=0

α̂jyn+j = hβ̂kf n+k,

f n+k = f (tn+k, yn+k).
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Extended Backward Differentiation Formulae
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k−1∑
j=0

α̂jyn+j = hβ̂kf n+k,

(ii) Compute yn+k+1 as the solution of the same BDF advanced one step, that
is,
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k−2∑
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(iii) Discard yn+k, compute f n+k+1 and insert it into EBDF method, to solve
for yn+k:

yn+k +
k−1∑
j=0

αjyn+j = hβkfn+k + hβk+1f n+k+1.
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Extended Backward Differentiation Formulae
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If the EBDF method used in (iii) is of order k + 1
and BDF methods in (i) and (ii) are of order k,
then the overall algorithm (i)-(iii) has order k + 1.
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Modified Extended BDF represented as GLMs

We can represent the MEBDF

(i) yn+k +

k−1∑
j=0

α̂jyn+j = hβ̂kf n+k,

(ii) yn+k+1 + α̂k−1yn+k +

k−2∑
j=0

α̂jyn+j+1 = hβ̂kf n+k+1,

(iii)
k∑

j=0

αjyn+j = hβ̂kfn+k + h(βk − β̂k)f n+k + hβk+1f n+k+1.

as a General Linear Method
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MEBDF represented as GLMs

Y [n] =


yn+k

yn+k+1

yn+k

 , f (Y [n]) =


f n+k

f n+k+1

fn+k

 ,

y[n] =


yn+k

yn+k−1

...

yn+1

 ,

c =
[

k + 1 k + 2 k + 1
]T
,

and, since we have to satisfy

y[n]i =

p∑
k=0

qikhky(k)(tn) + O(hp+1) = y(tn+k−i+1) + O(hp+1), i = 1, 2, . . . , k.

we choose

qj =

[
(k − i + 1)j

j!

]
i=1,...,k

, j = 0, . . . , k + 1,
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and, since we have to satisfy

y[n]i =

p∑
k=0

qikhky(k)(tn) + O(hp+1) = y(tn+k−i+1) + O(hp+1), i = 1, 2, . . . , k.

we choose

qj =

[
(k − i + 1)j

j!

]
i=1,...,k

, j = 0, . . . , k + 1,
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MEBDF represented as GLMs

A =


β̂k 0 0

−α̂k−1β̂k β̂k 0

βk − β̂k βk+1 β̂k

 ,

U =


−α̂k−1 −α̂k−2 · · · −α̂1 −α̂0

α̂k−1α̂k−1−α̂k−2 α̂k−1α̂k−2−α̂k−3 · · · α̂k−1α̂1−α̂0 α̂k−1α̂0

−αk−1 −αk−2 · · · −α1 −α0

 ,

B =



βk − β̂k βk+1 β̂k

0 0 0
...

...
...

0 0 0

0 0 0


, V =



−αk−1 −αk−2 · · · −α1 −α0

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0


,
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Generalization

A =


λ 0 0

a21 λ 0

a31 a32 λ

 , U =


u11 u12 . . . u1,k−1 u1k

u21 u22 . . . u2,k−1 u2k

u31 u32 . . . u3,k−1 u3k

 ,

B =



a31 a32 λ

0 0 0
...

...
...

0 0 0

0 0 0


, V =



u31 u32 . . . u3,k−1 u3k

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0


.
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Generalization

We keep

y[n] =
[

yn+k, yn+k−1, . . . , yn+1

]T
,

and

qj =

[
(k − i + 1)j

j!

]
i=1,...,k

, j = 0, . . . , k + 1, (1)

but, we assume that the abscissa vector is given by

c =
[

k + 1 + δ1, k + 1 + δ2, k + 1
]T
, (2)

and we require the method to have stage order q = p− 1 = k, that is

Y [n]
j = y(tn−1 + cjh) + O(hk+1), j = 1, 2, 3.
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Methods of order p = 2, 3, 4

k p δ1 δ2 ||ecp(δ1, δ2)||1 ||ecp(0, 1)||1 α αMEBDF

1 2 −3−
√

3
6 −

√
3

6

0.026

0.667 90◦ 90◦

2 3 − 21
43 − 13

33

0.008

0.285 90◦ 90◦

3 4 − 46
131 − 53

114

0.019

0.769 90◦ 90◦

A-stable like the MEBDF of the same order,

Smaller error coefficients than MEBDF.



Outline General Linear Methods Self Starting GLMs Work in progress and future work

Methods of order p = 2, 3, 4

k p δ1 δ2 ||ecp(δ1, δ2)||1 ||ecp(0, 1)||1 α αMEBDF

1 2 −3−
√

3
6 −

√
3

6 0.026 0.667 90◦ 90◦

2 3 − 21
43 − 13

33 0.008 0.285 90◦ 90◦

3 4 − 46
131 − 53

114 0.019 0.769 90◦ 90◦

A-stable like the MEBDF of the same order,

Smaller error coefficients than MEBDF.
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Methods of order p ≥ 5

k p δ1 δ2 ||ecp(δ1, δ2)||1 ||ecp(0, 1)||1 α αMEBDF

4 5 − 10
41 − 24

49

0.043

2.626

88.24◦

88.36◦

5 6 − 2
7 − 5

11

0.007

8.306

83.41◦

83.07◦

6 7 − 9
34 − 38

83

0.047

24.796

76.21◦

74.48◦

7 8 − 11
39 − 19

44

0.582

71.498

67.21◦

61.98◦

8 9 − 11
38 − 20

47

0.512

201.797

55.47◦

42.87◦

Except for k = 4, larger angle of A(α)-stability than MEBDF of the
same order,

Smaller error coefficients than the corresponding MEBDF.
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Generalized Linear Multistep Methods s = 3

A =


λ 0 0

a21 λ 0

a31 a32 λ

 , U =


u11 u12 . . . u1,k−1 u1k

u21 u22 . . . u2,k−1 u2k

u31 u32 . . . u3,k−1 u3k

 ,

B =



a31 a32 λ

0 0 0
...

...
...

0 0 0

0 0 0


, V =



u31 u32 . . . u3,k−1 u3k

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0


.
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Generalized Linear Multistep Methods s = 2

A =

 λ 0

a21 λ

 , U =

[
u11 u12 . . . u1,k−1 u1k

u21 u22 . . . u2,k−1 u2k

]
,

B =



a21 λ

0 0
...

...

0 0

0 0


, V =



u21 u22 . . . u2,k−1 u2k

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0


,

and
c =

[
k + 1+δ1, k + 1

]T
.
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k p δ1 α

1 2 0.7071067811865475 90◦

2 3 0.7335258700204377 90◦

3 4 0.7504244509534406 90◦

4 5 0.7626121809773775 86.04◦

5 6 0.7720273095289394 75.14◦

6 7 0.7796319013839141 57.37◦

7 8 0.7859692192050817 30.48◦

8 9 0.7913743037118012 -

Table: Values of δ1 which maximize the angles α of A(α)-stability for GLMMs2.
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Angles α of A(α)-stability

GLMMs2 GLMMs3 MEBDF BDF

k p α k p α k p α k p α

- - - - - - - - - 1 1 90◦

1 2 90◦ 1 2 90◦ 1 2 90◦ 2 2 90◦

2 3 90◦ 2 3 90◦ 2 3 90◦ 3 3 86.03◦

3 4 90◦ 3 4 90◦ 3 4 90◦ 4 4 73.35◦

4 5 86.04◦ 4 5 88.25◦ 4 5 88.36◦ 5 5 51.84◦

5 6 75.14◦ 5 6 83.41◦ 5 6 83.07◦ 6 6 17.84◦

6 7 57.37◦ 6 7 76.46◦ 6 7 74.48◦ - - -

7 8 30.48◦ 7 8 67.23◦ 7 8 61.98◦ - - -

8 9 - 8 9 55.13◦ 8 9 42.87◦ - - -
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1 General Linear Methods
Formulation of GLMs
RK, LMM and BDF represented as GLMs
GLMs as framework to analyze and generalize
MEBDF represented as GLMs
Generalized Linear Multistep Methods

2 Self Starting GLMs
Introduction
Singly Diagonally-Implicit Methods
Explicit Methods
Implicit-Explicit Methods

3 Work in progress and future work
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General Linear Methods
Y [n]

i = h
s∑

j=1

aijf (Y
[n]
j ) +

r∑
j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y[n]i = h
s∑

j=1

bijf (Y
[n]
j ) +

r∑
j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

for n = 1, 2, . . . ,N, where Nh = T − t0.
Internal stages:

Y [n]
i = y(tn−1 + cih) + O(hq+1), i = 1, 2, . . . , s,

External approximations:

y[n]i =

p∑
k=0

qikhky(k)(tn) + O(hp+1), i = 1, 2, . . . , r.

In the GLMs literature, attention has focused almost exclusively on methods

with high stage order, that is q = p or q = p − 1 .
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General Linear Methods can be written in matrix form as[
Y [n]

y[n]

]
=

[
A⊗ I U⊗ I

B⊗ I V⊗ I

][
hf (Y [n])

y[n−1]

]
, n = 1, 2, . . .

where
Y [n] = y(tn−1 + ch) + O(hq+1),

y[n] = (W⊗ I)z(tn, h) + O(hp+1),

and
z(t, h) =

[
y(t), hy′(t), . . . , hpy(p)(t)

]T
.

We consider the case W =
[
W̃, 0

]
, where W̃ ∈ Rr,2

(e.g. r = 2, W̃ = I2→ method in Nordsieck form).
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We consider the case W =
[
W̃, 0

]
, where W̃ ∈ Rr,2.

PROS

No need for a starting procedure and very easy (or no) finishing
procedure;

Multistep methods with one-step structure: very easy rescaling
procedure in case of stepsize changing, since the input vector y[n−1]

depends only on tn−1 and h;

Ability to achieve improved accuracy and stability properties;

In some special case only one of the external stages actually requires
new computation.

CONS

Slightly higher computational costs than RK, but no additional function
evaluations are needed
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Runge–Kutta represented as GLMs


Yi = yn + h

s∑
j=1

aijf (Yj), i = 1, 2, . . . , s,

yn+1 = yn + h
s∑

j=1

bjf (Yj)

[
A U

B V

]
=


a11 · · · a1s 1

...
. . .

...
...

as1 · · · ass 1

b1 · · · bs 1


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Singly Diagonally-Implicit Methods

DIRK

[
A U
B V

]
=



λ 0 · · · 0 1

a21 λ · · · 0 1
...

...
. . .

...
...

as1 as2 · · · λ 1

b1 b2 · · · bs 1



SSGLM

[
A U
B V

]
=



λ 0 · · · 0 u11 u12

a21 λ · · · 0 u21 u22
...

...
. . .

...
...

...

as1 as2 · · · λ us1 us2

b11 b12 · · · b1s v11 v12

b21 b22 · · · b2s v21 v22


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Singly Diagonally-Implicit Methods

DIRK

[
A U
B V

]
=



λ 0 · · · 0 1

a21 λ · · · 0 1
...

...
. . .

...
...

as1 as2 · · · λ 1

b1 b2 · · · bs 1


SSGLM

[
A U
B V

]
=



λ 0 · · · 0 u11 u12

a21 λ · · · 0 u21 u22
...

...
. . .

...
...

...

as1 as2 · · · λ us1 us2

b11 b12 · · · b1s v11 v12

b21 b22 · · · b2s v21 v22


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Example, SSGLM with p = s = 3 and q = 2

Two-parameter family of methods of order p = 3 and stage order q = 2:

A =


λ 0 0

c2(c2−2λ)
4λ λ 0

c2(3−6λ)+6λ−2
12λ(c2−2λ)

6λ2−6λ+1
3c22−6c2λ λ

 U =


1 λ

1 − c22

4λ + 3c2
2 − λ

1
2(6λ2−6λ+1)−3c2(4λ2−6λ+1)

12c2λ



B =

 c2(3−6λ)+6λ−2
12λ(c2−2λ)

6λ2−6λ+1
3c22−6c2λ λ

− (c2−1)(6λ3−18λ2+9λ−1)
2λ(6λ2−6λ+1)(c2−2λ)

12λ4−42λ3+36λ2−11λ+1
c2(6λ2−6λ+1)(c2−2λ)

3λ(2λ2−4λ+1)
6λ2−6λ+1


V =

 1
2(6λ2−6λ+1)−3c2(4λ2−6λ+1)

12c2λ

0 − (c2−1)(12λ4−42λ3+36λ2−11λ+1)
2c2(6λ3−6λ2+λ)


c =

[
2λ c2 1

]T
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Example, SSGLM with p = s = 3 and q = 2
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L-stable SSGLMp3 methods in the (c2,λ)-plane.

Let us show some numerical results for
c2 ≈ 0.8495959692893016 and λ ≈ 0.6177525723748765
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DIRK p = 3

Let us compare to L-stable DIRK with p = s = 3:

c =

[
λ

1
2
(1 + λ) 1

]T

A =


λ 0 0

−2(3λ3−9λ2+6λ−1)
3(2λ2−4λ+1) λ 0

4λ−1
4(3λ3−9λ2+6λ−1) − 3(2λ2−4λ+1)

2

4(3λ3−9λ2+6λ−1) λ


b =

[
4λ−1

4(3λ3−9λ2+6λ−1) −
3(2λ2−4λ+1)

2

4(3λ3−9λ2+6λ−1) λ

]T

,

where λ ≈ 0.4358665215... satisfies λ3 − 3λ2 +
3λ
2
− 1

6
= 0
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Prothero-Robinson Equation

We consider the Prothero-Robinson equation{
y′(t) = µ(y(t)− φ(t)) + φ′(t),

y(0) = φ(0).

with
µ = −106, φ(t) =

(
t +

π

4

)
and T = 10.
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Prothero: error vs nfval, for µ = −106, T = 10, p = 3
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SSGLM p3t7

DIRK p = 3: red line, SSGLM p = 3: blue line.
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DIRK p = 4

Let us compare to L-stable DIRK with p = 4, s = 5 from Hairer & Wanner
Solving ODEs II :
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Prothero: error vs nfval, for µ = −106, T = 10, p = 4
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DIRK p = 4, s = 5: red line, SSGLM p = 4, s = 5: blue line.
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DIRK p = 5

Let us compare to L-stable DIRK with p = 5, s = 5 from Kennedy &
Carpenter, Diagonally Implicit Runge-Kutta Methods for Ordinary
Differential Equations. A Review, NASA Report TM–2016–219173 :
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Prothero: error vs nfval, for µ = −106, T = 10, p = 5
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DIRK p = 5, s = 5: red line, SSGLM p = 5, s = 5: blue line.
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Van der Pol oscillator

 y′1 = y2,

y′2 =
1
ε
((1− y2

1)y2 − y1),

t ∈ [0,T], with initial conditions

y1(0) = 2, y2(0) = −
2
3
+

10
81
ε− 292

2187
ε2 − 1814

19683
ε3 + O(ε4),

where ε represents a stiffness parameter.
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VDP: error vs nfval, for λ = 10−6, T = 3/4, p = 3
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DIRK p = 3: red line, SSGLM p = 3: blue line.
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VDP: error vs nfval, for λ = 10−6, T = 3/4, p = 4
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Outline General Linear Methods Self Starting GLMs Work in progress and future work

VDP: error vs nfval, for λ = 10−6, T = 3/4, p = 5
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Explicit Methods

Explicit RK

[
A U
B V

]
=



0 0 · · · 0 1

a21 0 · · · 0 1
...

...
. . .

...
...

as1 as2 · · · 0 1

b1 b2 · · · bs 1



Explicit SSGLM

[
A U
B V

]
=



0 0 · · · 0 u11 u12

a21 0 · · · 0 u21 u22
...

...
. . .

...
...

...

as1 as2 · · · 0 us1 us2

b11 b12 · · · b1s v11 v12

b21 b22 · · · b2s v21 v22


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Explicit Methods

Explicit RK

[
A U
B V

]
=



0 0 · · · 0 1

a21 0 · · · 0 1
...

...
. . .

...
...

as1 as2 · · · 0 1

b1 b2 · · · bs 1


Explicit SSGLM

[
A U
B V

]
=



0 0 · · · 0 u11 u12

a21 0 · · · 0 u21 u22
...

...
. . .

...
...

...

as1 as2 · · · 0 us1 us2

b11 b12 · · · b1s v11 v12

0 0 · · · 1 0 0


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Example, Explicit SSGLM with p = 3.

Four-parameter family of methods of order p = 3:

A =


0 0 0

a21 0 0

a31 a32 0

 U =


1 0

1 c2 − a21

1 −a31 − a32 + 1



B =

 12a32c3
2−(12a32+5)c2

2+2(a32+3)c2−1
6(c2−1)c2(2a32c2−1)

1
6c2−6c2

2

2−3c2
6−6c2

0 0 1


V =

[
1 −3a32c2

2+(2a32+1)c2−1
3(c2−1)(2a32c2−1)

0 0

]
c =

[
0 c2 1

]T
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Example, Explicit SSGLM with p = 3

Trying to maximize the area of the Stability Region, for

a21 = 0.2257586925723292, a31 = −0.9077702963715302,

a32 = 1.5694810537893860, c2 = 0.3924017726910018.

we obtain
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Prothero: Explicit SSGLM, µ = −103, T = 10, p = 3
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VDP: Explicit SSGLM, λ = 10−3, T = 0.551, p = 3
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Implicit-explicit Self Starting General Linear Methods

Let us consider the following differential problem
y′(t) = f

(
y(t)
)
+ g
(
y(t)
)
, t ∈ [t0,T],

y(t0) = y0 ∈ Rm,

(3)

Where

f : Rm → Rm, represents the non-stiff processes

←− explicit method

g : Rm → Rm, represents the stiff processes.

←− implicit method
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Implicit-Explicit Self Starting General Linear Methods

Implicit-explicit GLMs be written in matrix form
Y [n+1] = h(A⊗ I)f

(
Y [n+1]

)
+ h(A∗ ⊗ I)g

(
Y [n+1]

)
+ (U⊗ I)y[n],

y[n+1] = h(B⊗ I)f
(
Y [n+1]

)
+ h(B∗ ⊗ I)g

(
Y [n+1]

)
+ (V⊗ I)y[n],

n = 0, 1, . . . ,N − 1, I ∈ Rm.

We assume that both methods, explicit and implicit, have the same abscissa
vector c and the same coefficients matrices U and V.

For high stage order methods:

IM, order p and stage order q = p

EX, order p and stage order q = p
⇒ IMEX, order p and stage order q = p

Here we cannot force high stage order.
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Implicit-Explicit Self Starting General Linear Methods


Y [n+1] = h(A⊗ I)f

(
Y [n+1]

)
+ h(A∗ ⊗ I)g

(
Y [n+1]

)
+ (U⊗ I)y[n],

y[n+1] = h(B⊗ I)f
(
Y [n+1]

)
+ h(B∗ ⊗ I)g

(
Y [n+1]

)
+ (V⊗ I)y[n],

n = 0, 1, . . . ,N − 1, I ∈ Rm

, where

y[n]i = qi0y(tn) + qi1hf (tn, y(tn)) + q∗i1hg(tn, y(tn)) +O(hp+1) i = 1, 2.

We assume q10 = 1, q20 = 0, and q∗11 = q11 = 0, q∗21 = 1, so

y[n]1 = y(tn) +O(hp+1)

←− no finishing procedure

y[n]2 = hg(tn, y(tn)) + q21hf (tn, y(tn)) +O(hp+1)
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IMEX SSGLMs - Numerical Experiments

We report some numerical results obtained by two IMEX SSGLMs:

of order p = 3;

with s = 3 and s = 4 stages, respectively;

with implicit part which
is Singly Diagonally-Implicit,
is L-stable, FSAL,
has stage order q = 2;

with explicit part which has absolute stability region larger than explicit
RKp3s3.
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Additive Linear Test Equation

We consider the linear test equation{
y′(t) = λ0 y(t) + λ1 y(t),

y(t0) = y0,

t ∈ [0,T], with λ0 = −1, λ1 = −10, y0 = 1, T = 1.
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Additive Linear Test Equation

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

log
10

(h)

-14

-12

-10

-8

-6

-4

-2

0
lo

g
1
0

( 
||
e

h
(t

f)|
| 
)

slope p=3

IMEX-SSGLMp3s4-t12

IMEX-SSGLMp3s3-t4

IMEX-RKp3s4-PR

IMEX-RKp3s4-CK



Outline General Linear Methods Self Starting GLMs Work in progress and future work

Van der Pol Oscillator

We consider the van der Pol equation y′1 = y2,

y′2 =
1
ε
((1− y2

1)y2 − y1),

t ∈ [0,T], with initial conditions

y1(0) = 2, y2(0) = −
2
3
+

10
81
ε− 292

2187
ε2 − 1814

19683
ε3 + O(ε4),

where ε represents a stiffness parameter.
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Van der Pol Oscillator, ε = 10−6
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Advection-reaction problem
∂u
∂t

+ α1
∂u
∂x

= −k1u + k2v + s1,

∂v
∂t

+ α2
∂v
∂x

= k1u− k2v + s2,

0 ≤ x ≤ 1, 0 ≤ t ≤ 1

with parameters α1 = 1, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1, and
with initial and boundary values

u(x, 0) = 1 + s2x, v(x, 0) =
k1

k2
u(x, 0) +

s2

k2
, 0 ≤ x ≤ 1,

u(0, t) = γ1(t), v(0, t) = γ2(t), 0 ≤ t ≤ 1.

Time dependent Dirichlet data γ1(t) = 1− sin(12t)4 at the left boundary.
ux is approximated by fourth-order central differences in the interior domain
and third-order finite differences at the boundary.
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Advection-reaction problem
∂u
∂t

+ α1
∂u
∂x

= −k1u + k2v + s1,

∂v
∂t

+ α2
∂v
∂x

= k1u− k2v + s2,

0 ≤ x ≤ 1, 0 ≤ t ≤ 1

with parameters α1 = 1, α2 = 0, k1 = 106, k2 = 2k1, s1 = 0, s2 = 1, and
with initial and boundary values

u(x, 0) = 1 + s2x, v(x, 0) =
k1

k2
u(x, 0) +

s2

k2
, 0 ≤ x ≤ 1,

u(0, t) = γ1(t), v(0, t) = γ2(t), 0 ≤ t ≤ 1.

Time dependent Dirichlet data γ1(t) = 1− sin(12t)4 at the left boundary.
ux is approximated by fourth-order central differences in the interior domain
and third-order finite differences at the boundary.
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Advection-reaction problem
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Shallow water model


∂

∂t
h +

∂

∂x
(hv) = 0,

∂

∂t
(hv) +

∂

∂x

(
h +

1
2

h2
)

=
1
ε

(
h2

2
− hv

)
,

where h is the water height with respect to the bottom and hv is the flux.

We use periodic boundary conditions and initial conditions at t0 = 0

h(0, x) = 1 +
1
5

sin(8πx), hv(0, x) =
1
2

h(0, x)2, with x ∈ [0, 1].

The space derivative was discretized by a fifth order finite difference weighted
essentially non-oscillatory (WENO5)
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Shallow water model


∂

∂t
h +

∂

∂x
(hv) = 0,

∂

∂t
(hv) +

∂

∂x

(
h +

1
2

h2
)

=
1
ε

(
h2

2
− hv

)
,

where h is the water height with respect to the bottom and hv is the flux.

We use periodic boundary conditions and initial conditions at t0 = 0

h(0, x) = 1 +
1
5

sin(8πx), hv(0, x) =
1
2

h(0, x)2, with x ∈ [0, 1].

The space derivative was discretized by a fifth order finite difference weighted
essentially non-oscillatory (WENO5)
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Shallow water model , ε = 10−4
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Shallow Water Equation, ep=1e-4

slope p=3
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Shallow water model , ε = 10−8
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Shallow Water Equation, ep=1e-8
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1 General Linear Methods
Formulation of GLMs
RK, LMM and BDF represented as GLMs
GLMs as framework to analyze and generalize
MEBDF represented as GLMs
Generalized Linear Multistep Methods

2 Self Starting GLMs
Introduction
Singly Diagonally-Implicit Methods
Explicit Methods
Implicit-Explicit Methods

3 Work in progress and future work
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Work in progress
Higher order explicit and implicit SSGLMs.

Construction of higher order IMEX SSGLMs.

Construction of Asimptotically Accurate (AP) IMEX methods for
hyperbolic systems with relaxation.

Future work
Embedded SSGLM for error estimation.

Strong Stability Preserving SSGLMs.
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Work in progress
Higher order explicit and implicit SSGLMs.

Construction of higher order IMEX SSGLMs.

Construction of Asimptotically Accurate (AP) IMEX methods for
hyperbolic systems with relaxation.

Future work
Embedded SSGLM for error estimation.

Strong Stability Preserving SSGLMs.
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Work in progress
Higher order explicit and implicit SSGLMs.

Construction of higher order IMEX SSGLMs.

Construction of Asimptotically Accurate (AP) IMEX methods for
hyperbolic systems with relaxation.

Future work
Embedded SSGLM for error estimation.

Strong Stability Preserving SSGLMs.
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SSP SSGLMs, p = 2 - Inviscid Burgers’ equation
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SSP SSGLMs, p = 3 - Inviscid Burgers’ equation
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SSP SSGLMs, p = 4 - Inviscid Burgers’ equation
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SSP SSGLMs, p = 2 - Inviscid Burgers’ equation
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SSP SSGLMs, p = 3 - Inviscid Burgers’ equation
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SSP SSGLMs, p = 4 - Inviscid Burgers’ equation
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Work in progress
Higher order explicit and implicit SSGLMs.

Construction of higher order IMEX SSGLMs.

Construction of Asimptotically Accurate (AP) IMEX methods for
hyperbolic systems with relaxation.

Future work
Embedded SSGLM for error estimation.

Strong Stability Preserving SSGLMs.

Weak stage order for SSGLM.
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WSO - Prothero with µ = −106, T = 10, p = 3
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DIRK p3s3: red line, SSGLM p3s3: blue line.
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WSO - Prothero with µ = −106, T = 10, p = 3
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DIRK p3s4 with WSO 3: red line, SSGLM p3s3: blue line.
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WSO - Prothero with µ = −106, T = 10, p = 3
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DIRK p3s4, WSO 3: red line, SSGLM p3s4, WSO 3: blue line.
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How to get stage order q = 3?

[
A U
B V

]
=



λ 0 · · · 0 u11 u12

a21 λ · · · 0 u21 u22
...

...
. . .

...
...

...

as1 as2 · · · λ us1 us2

as1 as2 · · · λ us1 us2

0 0 · · · 1 0 0


FSAL + Special Structure ensure the method to have the so-called Runge-Kutta
stability, that is

p(w, z) = det
(
wI−M(z)

)
= w(w− R(z)),

where M(z) = V + zB(I− zA)−1U.
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How to get stage order q = 3?

[
A U
B V

]
=



λ 0 · · · 0 u11 u12 u13

a21 λ · · · 0 u21 u22 u23
...

...
. . .

...
...

...
...

as1 as2 · · · λ us1 us2 us3

as1 as2 · · · λ us1 us2 us3

0 0 · · · 1 0 0 0

b31 b32 · · · b3s v31 v32 v33


where

y[n] = (W⊗ I)z(tn, h) + O(hp+1),

and
z(t, h) =

[
y(t), hy′(t), h2y′′(t), . . . , hpy(p)(t)

]T
.

Consider the case W =
[
W̃, 0

]
, where W̃ = I3.
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Thank you for your attention!!
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