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Framework

Mathematical modeling of traffic flow on a single road, by means of:

a microscopic (agent-based) follow-the-leader model based on ODEs

a MACROSCOPIC (fluid-dynamic) model based on conservation laws

a Mesoscopic (gas-kinetic) model provides a statistical description
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Uncertainty

Limitations for obtaining reliable traffic forecast

highly nonlinear dynamics

traffic is subjected to various sources of uncertainties
- errors in the measurements
- estimate the reaction time of cars and drivers

Possible approaches
non intrusive methods
: fixed number of samples using deterministic algorithms (i.e. Monte Carlo)

intrusive methods
: reformulate the problem and solve - only once - a (big) system of

deterministic equations (i.e. Stochastic Galerkin)
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Stochastic Galerkin approach
ξ uncertainty described by a random variable ω on (Ω,F(Ω),P)
: we are dealing with u(t, x, ξ) : R+ × R× Ω→ Rd

i.e. ∂tu(t, x, ξ) + ∂xf(u(t, x, ξ)) = 0
the generalized polynomial chaos gPC expansion1:
: we discretize the probability space Ω and the stochastic quantities are

represented by infinite series expansions :
φ(ξ) : Ω→ R orthonormal polynomials w.r.t. the inner product and
{φi(ξ)}∞i=0 is a basis of L2(Ω,P):

u(t, x, ξ) =
∞∑
k=0

ûk(t, x)φk(ξ) where ûk(t, x) =
∫

Ω
u(t, x, ξ)φk(ξ) dP.

We can express the mean and variance of u(t, x, ξ) as
E[u(t, x, ξ)] = û0(t, x) and Var[u(t, x, ξ)] =

∑∞
k=1 û

2
k(t, x).

1P. Pettersson, G. Iaccarino, and J. Nordström, Polynomial chaos methods for hyperbolic
partial differential equations, Springer International Publishing, 2015
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Stochastic Galerkin approach
Idea: expand the stochastic quantities in truncated series and then project

GK [u](t, x, ξ) =
K∑
i=0

ûi(t, x)φi(ξ)

For any fixed (t, x), the expansion converges in the sense2

||GK [u](t, x, ·)− u(t, x, ·)||2 → 0 for K →∞.

Substituting the expansions in the evolution equations and applying the
Galerkin projection lead to a deterministic system for the coefficients of the
truncated series, due to the orthogonality of the basis functions, i.e.
〈
∑K
i=0 ûi(t, x)φi(ξ), φj(ξ)〉 = ûj(t, x)

2R.H. Cameron, W.T Martin, The orthogonal development of non-linear functionals in
series of Fourier-Hermite functionals. Ann Math, 1947.

6/30 Uncertainty quantification in hierarchical vehicular flow models
E. Iacomini | Universita’ di Ferrara



Traffic models with uncertainty
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Microscopic traffic models

N cars on a infinite road, overtaking not possible

xi(t) position of car i at time t

vi(t) velocity of car i at time t

ai(t) acceleration of car k at time t

X1 < X2 < . . . < XN

X1 XN

Remark
Note that the N -th car (the leader) needs a special dynamic because has no
one in front of him.
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...in formulas

First order:
ẋi(t) = vi(t) i = 1, . . . N

vi(t) =
{
s
(

L
xi+1(t)−xi(t)

)
i = 1, . . . , N − 1

s̄. i = N

s(∆x) is a given velocity function
Second order model:

ẋi(t) = vi(t) i = 1, . . . N

v̇i(t) =
{
a(xi+1(t), xi(t), vi+1(t), vi(t)) i = 1, . . . , N − 1
ā i = N

where a = C vi+1(t)−vi(t)
∆x2

i
(t) + A

tr
(s( L

∆xi(t) )− vi(t)), C,A, tr, L > 0
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Micro model with uncertainty

Uncertainty: Estimation of the distance between two vehicles at initial time:
x0
i+1 − x0

i + ξ

→ xi(t, ξ) ≈
∑K

k=0 x̂ik (t)φk(ξ)

First order:
ẋi(t, ξ) = vi(t, ξ)
vi(t, ξ) = s

(
L

xi+1(t,ξ)−xi(t,ξ)

)
vN = s̄.

→


˙̂xik = v̂ik i = 1, . . . N
v̂ik = ŝik

(
L

∆xi

)
i = 1, . . . , N − 1

v̂N = s̄ e1

system of N × (K + 1) equations

ŝik =
∫

Ω s
(

L
xi+1−xi+ξ

)
Φk(ξ)p(ξ)dξ, if s is linear: ŝik

(
L

∆xi

)
≈ s
(

L
∆x̂ik

)
,

where ∆x̂ik = x̂i+1k − x̂ik

10/30 Uncertainty quantification in hierarchical vehicular flow models
E. Iacomini | Universita’ di Ferrara



Micro model with uncertainty

Second order:
˙̂xik (t) = v̂ik (t) i = 1, . . . N
˙̂vik (t) = C

(
P−2(∆x̂ik )∆v̂ik

)
+ A

tr

(
ŝik −

∑∞
k=0 v̂ik (t)

)
i = 1, . . . N − 1

˙̂vN = ā.

system of 2N × (K + 1) equations

P(û) :=
K∑̀
=0
û`M` andM` := (〈φ`, φiφj〉)Ki,j=0 is a symmetric matrix of

dimension (K + 1)× (K + 1) for any fixed ` ∈ {0, . . . ,K}.
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Kinetic traffic flow models
v ∈ [0, VM ] is the velocity

g(t, x, v) is the mass distribution function of traffic

Q[g] models the car–to–car interactions

ε > 0 relaxation rate towards the equilibrium

BGK type models

∂tg(t, x, v) + v ∂xg(t, x, v) = 1
ε
Q[g](t, x, v), g(0, x, v) = g0(x, v)

∫ VM

0 g0(x, v) dv = ρ0(x)
Q[g] = Mg(v; ρ)− g is the linear operator of BGKa type
Mg(v; ρ) describes the distribution at the equilibrium (Maxwellian)

aP. L. Bhatnagar, E. P. Gross, and M. Krook A Model for Collision Processes in Gases I. Small
Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev., 1954
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Kinetic model with uncertainty
We are interested in the evolution of g(t, x, w, ξ):

∂tg(t, x, w, ξ) + ∂x([w − h(ρ(ξ))]g(t, x, w, ξ)) = 1
ε

(Mg(w; ρ(ξ))− g(t, x, w, ξ))

g(0, x, v, ξ) = g0(x, v, ξ)

Spectral expansion and Galerkin projection (
∑K
i=0 g̃iφi(ξ) ):{

∂tg̃i(t, x, w) + ∂x

((
wId− P (h(ρ̃))

)
g̃(t, x, w)

)
i

= 1
ε

(
M̃i (w; ρ̃)− g̃i(t, x, w)

)
g̃i(0, x, w) =

∫
Ω g0(t, x, w, ξ)φi(ξ)pΞ(ξ)dξ

where ∀i = 0, . . . ,K:
(P(h(ρ̃))g̃)i =

∑K

j=0

∫
Ω h
(∑K

`=0 ρ̃`φ`(ξ)
)
g̃jφj(ξ)φi(ξ)pΞ(ξ)dξ,

M̃i (w; ρ̃(t, x)) =
∫

Ω Mg

(
w;
∑K

`=0 ρ̃`(t, x)φ`(ξ)
)
φi(ξ)pΞdwdξ,
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Macroscopic traffic flow models

ρ(x, t) density of cars at point x and time t

v(x, t) velocity of cars at point x and time t

f(x, t) = ρ(x, t)v(x, t) flux of cars at point x and time t

First order model: LWR

∂tρ+ ∂x(ρVeq(ρ)) = 0, x ∈ R, t > 0
ρ(0, x) = ρ0(x) x ∈ R

it is a hyperbolic conservation law where the velocity depends on the density
and typically Veq(ρ) = 1− ρ,
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Macro with uncertainty: LWR
We are interested in the evolution of ρ(t, x, ξ)

∂tρ(t, x, ξ) + ∂x(ρ(t, x, ξ) Veq(ρ(t, x, ξ))) = 0
ρ(0, x, ξ) = ρ0(x, ξ)

Spectral expansion and Galerkin projection (
∑K
i=0 ρ̂iφi(ξ) )

∂tρ̂+ ∂x

(
P(ρ̂(t, x))V̂eq(ρ̂(t, x))

)
= −→0

ρ̂(0, x) = ρ̂0

with −→0 = (0, . . . , 0)T vector of K + 1 components.

Note: an arbitrary but consistent gPC expansion is required for Veq, i.e.
Veq = 1− ρ leads to V̂eq(ρ̂(t, x)) = e1 − ρ̂
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Macroscopic models
Second order ARZ:{

∂tρ+ ∂x(ρv) = 0, x ∈ R, t > 0

∂t(v + h(ρ)) + v∂x(v + h(ρ)) = 1
τ (Veq(ρ)− v), x ∈ R, t > 0

in conservative form:
∂tρ+ ∂x(z − ρh(ρ)) = 0, x ∈ R, t > 0

∂tz + ∂x( z
2

ρ − zh(ρ)) = ρ
τ (Veq(ρ)− v), x ∈ R, t > 0

v(ρ, z) = z
ρ − h(ρ)

h(ρ) : R+ → R+ is the hesitation function or traffic pressure law,
τ > 0 (reaction time) makes drivers tend to the equilibrium velocity. In
the limit τ → 0 we recover a first order model where v = Veq

the system is strictly hyperbolic if ρ > 0.
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Macro with uncertainty: ARZ

Naive idea: substitute the truncated expansions (gPC) into the random
system and then use a Galerkin ansatz to project it,
i.e. f̂(ρ̂(t, x)) = 〈f(

∑K
k ρ̂k(t, x)φk(·)), φi(·)〉i=0,...,K

BUT here the Jacobian of the flux function consists of the projected entries of
the deterministic Jacobian =⇒ not necessarily real eigenvalues and full set of
eigenvectors =⇒ LOSS of hyperbolicity
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gPC formulation for ARZ

To solve the problem:
more assumptions on the basis functions and a change of variable, i.e. z

ρ

derive the ARZ from the BGK approximation

gPC formulation for ARZ3

∂tρ̂i(t, x) + ∂x [ẑi(t, x)− (P(ρ̂(t, x))ρ̂(t, x))i] = 0

∂tẑi(t, x) + ∂x
[
(P(ẑ(t, x))P−1(ρ̂(t, x))ẑ(t, x))i − (P(ρ̂(t, x))ẑ(t, x))i

]
=

1
τ

((
P(Veq(ρ̂(t, x)))ρ̂(t, x) + P(h(ρ̂(t, x)))ρ̂(t, x)

)
i
− ẑi(t, x)

)
i = 0, . . . ,K

3S. Gerster, M. Herty, E. I., Stability analysis of a hyperbolic stochastic Galerkin
formulation for the Aw-Rascle-Zhang model with relaxation, MBE, 2021.
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From Micro to Macro

Theorem (E.I.)

Let ξ be a random variable and be N cars of fixed length L. Assume that
s( L

∆x ) = v(ρ). Then the stochastic ODEs system
ẋi(t, ξ) = vi(t, ξ) i = 1, . . . N
vi(t, ξ) = s

(
L

xi+1(t,ξ)−xi(t,ξ)

)
i = 1, . . . , N − 1

vN = s̄.

converges to the stochastic LWR model

∂tρ(t, x, ξ) + ∂x(ρ(t, x, ξ) V (ρ(t, x, ξ))) = 0
ρ(0, x, ξ) = ρ0(x, ξ)

for L→ 0 and N →∞.

Note: the same can be proven for the second order model.
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From Kinetic to Macro
Theorem (M. Herty, E.I.)

Let g̃i be a strong solution for the kinetic model for i = 0, . . . ,K.
Under some technical assumptions, the first and the second moment of g̃i,
(ρ̃, z̃), formally fulfill pointwise in (t, x) ∈ R+ × R and for all i = 0, . . . ,K the
second–order traffic flow model

∂tρ̃i(t, x) + ∂x [z̃i(t, x)− (P(ρ̃(t, x))ρ̃(t, x))i] = 0

∂tz̃i(t, x) + ∂x
[
(P(z̃(t, x))P−1(ρ̃(t, x))z̃(t, x))i − (P(ρ̃(t, x))z̃(t, x))i

]
=

1
ε

((
P(Veq(ρ̃(t, x)))ρ̃(t, x) + P(h(ρ̃(t, x)))ρ̃(t, x)

)
i
− z̃i(t, x)

)
ρ̃i(0, x) =

∫
W

g̃0,i(t, x, w)dw, z̃i(0, x) =
∫
W

w g̃0,i(t, x, w)dw.

Moreover, the system is hyperbolica for ρ̃i > 0 and and the solution is also a
solution of the stochastic ARZ model.

aS. Gerster, M. Herty, E. I., Stability analysis of a hyperbolic stochastic Galerkin
formulation for the Aw-Rascle-Zhang model with relaxation, MBE, 2021.
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Diffusion coefficient
Starting from

∂tg(t, x, w, ξ) + ∂x

[
(w − h(ρ(t, x, ξ)))g(t, x, w, ξ)

]
= 1
ε

(
Mg(w; ρ)− g(t, x, w, ξ)

)
assume ε > 0: small but positive.
perform a first-order Chapman Enskog approximation
: g(t, x, w, ξ) = Mg(w; ρ(t, x, ξ)) + εg1(t, x, w, ξ)

obtain an advection-diffusion equation 4.
∂tρ+ ∂x (ρVeq(ρ)) = ε∂x (µ(ρ)∂xρ) , ρ = ρ(t, x, ξ),

µ(ρ) =
(

−∂ρQeq(ρ)2 − ∂ρh(ρ)∂ρQeq(ρ)ρ+Qeq(ρ)∂ρh(ρ)
)

+
∫
V

v2∂ρMf (v, ρ)dv

Tool for studying possible instabilities

Pt,x(µ ≤ 0) :=
∫

Ω
H(−µ(ρ(t, x, ξ))pΞ(ξ)dξ.

4M. Herty, G. Puppo, S. Roncoroni, G. Visconti, The BGK approximation of kinetic models for traffic,
Kinetic & Related Models, 2020.
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Numerics
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Numerical settings

ξ ∼ U(0, 1),
Basis choice: Haar basis

ψ(ξ) :=


1 if 0 ≤ ξ < 1

2 ,

−1 if 1
2 ≤ ξ < 1,

0 else.
and ψj,k(ξ) := 2

j
2ψ
(
2jξ − k

)
Using a lexicographical order we identify the gPC basis
φ0 = 1, φ1 = ψ, φ2 = ψ1,0, φ3 = ψ1,1, . . .

∆x = 2 · 10−2 on the space interval [0, 2],
Tf = 1 and ∆t fulfills the CFL condition,
h(ρ) = ρ,
Veq(ρ) = 1− ρ.
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Fundamental Diagram

Mean Mean & Variance
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Numerical settings

Initial data
Rarefaction wave:

ρ(x, 0, ξ) =
{

0.55 + 0.3ξ for x < 1,
0.3 for x > 1,

v(x, 0, ξ) =
{

0.2 for x < 1,
0.7 for x > 1.

Clever idea
We compute offline in a precomputation step the entries of the matrices P(·)
and the tensorM =⇒ not computationally expensive.
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Numerical convergence in K
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Application: detect high risk
regions

Pt,x(µ ≤ 0) :=
∫

Ω H(−µ(ρ(t, x, ξ))pΞ(ξ)dξ.

Probability of instabilities Solution
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Conclusion and future
perspectives
Recap

Uncertainty is introduced in traffic flow models to improve traffic forecast.

Micro, kinetic and macroscopic scales are investigated and the
convergence to the latter one is shown. Moreover the obtained
formulation preserves hyperbolicity.

The stability analysis is performed and the diffusion coefficient is studied.

Numerical simulations illustrate the theoretical results.

What’s next
Use real data to estimate ξ.
Study the uncertainty in the non-local case.
study the uncertainty via "efficient" data-friendly non-intrusive methods.
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Numerical scheme
Idea: employ the local Lax Friedrichs scheme to solve SG-ARZ combined with
an IMEX scheme1 in the inhomogeneous case. The source term is treated

implicitly, due to the stiffness while the convective term is treated explicitly for
l = 0, . . . ,K, j = 0, . . . , N :

Expl. update

ρ̄
n+1
j,l = ρ̄

(1)
j,l −

∆t
∆x

(
Fj+ 1

2
(ρ̄(1), z̄(1))− Fj− 1

2
(ρ̄(1), z̄(1))

)
z̄n+1
j,l = z̄

(1)
j,l −

∆t
∆x

(
Fj+ 1

2
(ρ̄(1), z̄(1))− Fj− 1

2
(ρ̄(1), z̄(1))

)

Implicit step
{
ρ̄

(1)
j,l = ρ̄nj,l l = 0, . . . ,K, j = 0, . . . , N
z̄

(1)
j,l = τ

τ+∆t z̄
n
j,l + ∆t

τ+∆t

(
P(ρ̄n)V̂eq

n
+ P(ρ̄n)ρ̄n

)
where Fj± 1

2
is the numerical flux of the local Lax Friedrichs scheme.

1L. Pareschi and G. Russo, Implicit–explicit runge–kutta schemes and applications to
hyperbolic systems with relaxation, Journal of Scientific computing, 2005
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Hyperbolic formulation
Assumptions on basis functions
A1) The precomputed matricesM` andMk commute for `, k = 0, . . . ,K.
A2) There is an eigenvalue decomposition P(û) = VD(û)V T with constant

eigenvectors.
A3) The matrices P(û) and P(ŷ) commute for all û, ŷ ∈ RK+1.

SG hyperbolic preserving formulation
Moreover, assuming h(ρ) = ργ , γ = {1, 2}, so ĥ(ρ̂) = Pγ−1(ρ̂)ρ̂, and its
Jacobian of the form ĥ′(ρ̂) = VDĥ′(ρ̂)V T, we get

 ∂tρ̂+ ∂x

(
ẑ − P(ρ̂)ĥ(ρ̂)

)
= ~0

∂tẑ + ∂x

(
P(ẑ)P−1(ρ̂)ẑ − P(ẑ)ĥ(ρ̂)

)
= ~0.

(2)
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Main result

Theorem 1
Let a gPC expansion with the properties (A1) – (A3), a stochastic Galerkin
formulation of a hesitation function ĥ(ρ̂) and a Galerkin formulation of an
equilibrium velocity V̂eq(ρ̂) be given. Assume further a Jacobian of the
hesitation function

ĥ′(ρ̂) = Dρ̂ĥ(ρ̂) = VDh′(ρ̂)V T

with constant eigenvectors.
Then, for smooth solutions (??) and (??) are equivalent and strongly
hyperbolic. The characteristic speeds are

λ̂1(ρ̂, ẑ) = D
(
v̂(ρ̂, ẑ)

)
−Dh′(ρ̂)D(ρ̂) and λ̂2(ρ̂, ẑ) = D

(
v̂(ρ̂, ẑ)

)
for v̂(ρ̂, ẑ) = P−1(ρ̂)ẑ − ĥ(ρ̂), where D(v̂) denote the eigenvalues of the
matrix P(v̂).
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Stability analysis

Theorem 2
Under the same assumptions of the previous Theorem, the first-order
correction to the local equilibrium approximation reads

∂tρ̂+ ∂xf̂eq(ρ̂) = τ∂x
(
µ̂(ρ̂)∂xρ̂

)
, f̂eq(ρ̂) = ρ̂ ∗ V̂eq(ρ̂)

µ̂(ρ̂) = V

[
D(ρ̂)2DVeq(ρ̂)

(
DVeq(ρ̂) +Dh(ρ̂)

)]
V T .

Furthermore, it is dissipative if and only if the sub-characteristic condition

λ̂1(ρ̂, ẑ) ≤ f̂ ′eq(ρ) ≤ λ̂2(ρ̂, ẑ)

holds on ẑ = ρ̂ ∗
(
V̂eq(ρ̂) + ĥ(ρ̂)

)
with DVeq(ρ̂) < ~0.
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