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Basic concepts on SL schemes – hyperbolic case

Model equation: linear, constant-coefficient advection{
ut(x , t) + aux(x , t) = 0

u(x , 0) = u0(x)

Representation formula

u(x , t) = u0(x − at)

Time discretization

u(xj , tn+1) = u(xj − a∆t, tn)

Semi-Lagrangian (SL) schemes stem from the so-called
Courant–Isaacson–Rees (CIR) method (’52) which discretizes the
representation formula (instead of the equation)
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Fully discrete SL schemes

Semi-Lagrangian (SL) discretization

vn+1
j = I [V n](xj − a∆t)

The most classical choice for the interpolation I [V ] is a symmetric
Lagrange interpolation on a structured uniform mesh. Various other
options are possible, among which Galerkin projection
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Extension to second order operators (1)
In the constant coefficient, advection–diffusion case we have, via the
Taylor expansion:

u(xj + a∆t +
√

2ν∆t) = u(xj) + ∆t aux(xj)+
√

2ν∆t ux(xj) +

+∆t νuxx(xj)+O(∆t3/2) + O(∆t2)

u(xj + a∆t −
√

2ν∆t) = u(xj) + ∆t aux(xj)−
√

2ν∆t ux(xj) +

+∆t νuxx(xj)−O(∆t3/2) + O(∆t2)

Abstract difference operator for advection–diffusion

1

2

[
u(xj + a∆t +

√
2ν∆t) + u(xj + a∆t −

√
2ν∆t)

]
=

= u(xj) + ∆t [aux(xj) + νuxx(xj)] + O(∆t2)

First proposed for Dynamic Programming equations [KD01, CF95]

Roberto Ferretti (Roma Tre) GPU-SL for Navier–Stokes Catania, 21 Feb 2023 5 / 45



Extension to second order operators (1)
In the constant coefficient, advection–diffusion case we have, via the
Taylor expansion:

u(xj + a∆t +
√

2ν∆t) = u(xj) + ∆t aux(xj)+
√

2ν∆t ux(xj) +

+∆t νuxx(xj)+O(∆t3/2) + O(∆t2)

u(xj + a∆t −
√

2ν∆t) = u(xj) + ∆t aux(xj)−
√

2ν∆t ux(xj) +

+∆t νuxx(xj)−O(∆t3/2) + O(∆t2)

Abstract difference operator for advection–diffusion

1

2

[
u(xj + a∆t +

√
2ν∆t) + u(xj + a∆t −

√
2ν∆t)

]
=

= u(xj) + ∆t [aux(xj) + νuxx(xj)] + O(∆t2)

First proposed for Dynamic Programming equations [KD01, CF95]
Roberto Ferretti (Roma Tre) GPU-SL for Navier–Stokes Catania, 21 Feb 2023 5 / 45



Extension to second order operators (2)

A first upwinding of magnitude a ∆t follows the advection (if
advection occurs)

Roberto Ferretti (Roma Tre) GPU-SL for Navier–Stokes Catania, 21 Feb 2023 6 / 45



Extension to second order operators (2)

A first upwinding of magnitude a ∆t follows the advection (if
advection occurs)

A second symmetric displacement of magnitude
√

2ν∆t is related
to the diffusion (possibly asymmetric when close to the boundary)
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Resolution of the smaller scales (1)

The numerical domain of dependence is made of two regions of
reconstruction which are 2

√
2ν∆t apart. This “hole” in the stencil

may cause the smaller scales to be underresolved [F10].

Heat equation, ∆x = 0.02, discontinuous initial condition

∆t = 0.1 ∆t = 0.01 ∆t = 0.001
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Resolution of the smaller scales (2)

Avoiding any such ”hole” in the numerical domain of dependence
would require the parabolic CFL condition ∆t ∼ ∆x2

Asymptotically, “holes” are filled at a given time T under the
weaker condition:

∆t = o
(
T 2/3∆x2/3

)
in particular, hyperbolic type ∆t/∆x relationships are acceptable

Adaptive strategies of choice for the time step are possible
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Extension to 2D

Equazioni di Navier-Stokes Schema Numerico Test Numerici Conclusioni

Strategia semi-Lagrangiana per Trasporto Puro

Ricostruiamo la soluzione al tempo tn+1 tramite i valori della
soluzione calcolata in precedenza, rintracciati seguendo le curve di
flusso al tempo tn.

The first upwinding is driven by the advective term (higher order
implementations are possible)
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Extension to 2D

Equazioni di Navier-Stokes Schema Numerico Test Numerici Conclusioni

Strategia semi-Lagrangiana per Diffusione-Trasporto

Ricostruiamo la soluzione al tempo tn+1 tramite i valori della
soluzione nei punti adiacenti a quelli rintracciati seguendo le curve
di flusso al tempo tn.

The first upwinding is driven by the advective term (higher order
implementations are possible)

The symmetric displacement is scaled and replicated on each
direction: δk = {(±

√
4ν∆t, 0), (0,±

√
4ν∆t)}
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General features of the scheme

Consistent and stable (stability proved for high-order space
reconstructions and constant viscosity)

Explicit (although first-order) treatment of the diffusion term,
accuracy improving at high Reynolds numbers (the consistency error
is O(∆t/Re))

High-order implementations for the hyperbolic part relatively easy to
construct

Large time steps allowed with weak requirements on the ∆t/∆x
relationship
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Navier–Stokes Equations

Goal: integrating the SL advection–diffusion solver in a code for the
incompressible NSE{

ut + (u · ∇)u − ν∆u +∇p = 0

∇ · u = 0

This is typically achieved via intermediate formulations of the NSE:

Vorticity–Streamfunction formulation

Suitable only for the 2D case

Difficult and inaccurate treatment of boundary conditions for ω

Velocity–Pressure (projection) formulation

Suitable for both the 2D and the 3D case

Easier treatment of boundary conditions for u
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Navier–Stokes Equations: projection formulation

General idea: linearizing the NSE by neglecting the incompressibility
constraint, then correcting the solution via a suitable pressure term

un+1/2−un

∆t = −(un · ∇)un + ν∆un

−∆pn+1 = − 1
∆t∇ · un+1/2

un+1 = un+1/2 −∆t∇pn+1

with proper BCs (typically, Dirichlet in the first step and homogeneous
Neumann in the second for no-slip boundary)

Critical operations: advection–diffusion and Poisson solvers

Time advancing is performed in the form of fractional steps

Applicable to 3D problems, easier treatment of BCs for u
Easier treatment of unstructured geometries

Avoids systematic errors for the numerical divergence of u
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Navier–Stokes Equations: SL projection scheme

SL scheme


un+1/2
j = 1

4

∑4
k=1 I [U

n](xj −∆t un
j + δk) SL advection–diffusion solver

−∆pn+1 = − 1
∆t div∆un+1/2 FD or other approximations

un+1 = un+1/2 −∆t∇pn+1

where δk = {(±
√

4ν∆t, 0), (0,±
√

4ν∆t)} (in 2D)

A first order implementation can be easily constructed via built-in Matlab
functions:

Monotonized cubic interpolation for I [Un] (structured case)

Triangle-based interpolation from PDEtoolbox (unstructured case)

Sparse LU/Cholesky solver for the Poisson eqn

Centered FD (or FE discrete divergence) for div∆

Roberto Ferretti (Roma Tre) GPU-SL for Navier–Stokes Catania, 21 Feb 2023 15 / 45



Boundary conditions for velocity/vorticity (1)

It is possible to obtain a consistent scheme with non-symmetric
weights, and this allows to re-define the scheme (although with
reduced consistency rate) when close to the boundary

The local drop in consistency (to order 1/2) occurs in a band of
width O(

√
∆t), so that it does not affect the global order

Consistency conditions:
α+ + α− = 1/2

α+δ+ − α−δ− = 0

α+(δ+)2 + α−(δ−)2 = 2ν∆t.
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Boundary conditions for velocity/vorticity (2)

Using these further degrees of freedom on weights and displacements and
the consistency conditions, we can then enforce

Dirichlet BCs via modified weights/displacements

δ− = δM , δ+ =
4∆tν

δM
, α− =

1

2

δ+

δ+ + δ−
, α+ =

1

2
− α−.
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Lid-driven cavity for the NSE, projection scheme (1)

(Loading...)

Lid-driven cavity at Re = 1000
200× 200 nodes, Courant number ≈ 5
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Lid-driven cavity for the NSE, projection scheme (2)

(Loading...)

Lid-driven cavity at Re = 10000
200× 200 nodes, Courant number ≈ 5
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Von Karman vortex street, projection scheme

Ω

Um = 0.3 m/s

Re = 20

Um = 1.5 m/s

Re = 100

Re = 20

∆x = 0.02 ∆t =

0.03 0.45

A = (0.15, 0.2) B = (0.25, 0.2)

∆P = PA − PB.

∆Psim = 0.1122

∆Prif = 0.1175

E =
|∆Psim −∆Prif |

∆Prif

= 0.0447.

Re = 100

∆x = 0.02 ∆t = 0.01

0.75

(Loading...)

Von Karman vortex street at Re = 100, grid and solution
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Evaluation of the scheme

Advantages

Possibility of (relatively) large Courant numbers

Reduced complexity for the advection–diffusion solver

Accurate transition between laminar and turbulent regime

Bottlenecks

Relatively inaccurate treatment of BCs

Difficult to treat efficiently a complicate geometry

Improvements

A second-order advection–diffusion solver

Higher order treatment of BCs

Efficient point location strategies for unstructured geometries

Scalability on GPU architectures → C++ implementation
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Second-order advection–diffusion solver (1)

A possible second-order improvement of the previous AD solver is borrowed
from the literature on approximation schemes for Stochastic Differential
Equations, and is a stochastic version of the Crank–Nicolson scheme:

Stochastic Crank–Nicolson scheme

zn+1
k,i = xi −

∆t

2

(
u(xi , tn+1) + u(zn+1

k,i , tn)
)

+ δk .

In order to obtain second-order consistency, advection and diffusion
operators cannot any longer be considered as decoupled.

In this case, the increase in the order of approximation requires that
moments of the probability density of

√
2ν∆W are reproduced by

the discrete density up to the fifth moment. This motivates the
introduction of further displacements and weights.
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Second-order advection–diffusion solver (2)

Passing from first- to second-order, the displacements δk and associated
weights are modified as

first order second order

Consistency analysis for the resulting SL scheme is conceptually
simple, but very technical

Well scalable on SIMD architectures
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High-order treatment of boundary conditions (1)
Boundary conditions are a typical bottleneck of SL schemes. To avoid the
loss of consistency outlined above, we can compute the value at the foot
of a characteristic by extrapolation [BCCF]

To obtain a stable extrapolation, it should be performed on a
coarser grid (of space step h > ∆x)

The analysis of this procedure provides a stable region of thickness
O(h) outside of the boundary, where extrapolation is allowed:

d(zn+1
k,i ,Ω) < C (nex)h

A careful coupling between h and ∆x is required to keep both
stability and consistency rate
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High-order treatment of boundary conditions (2)

The extrapolation grid (Q2 in this example) is constructed near the
boundary

The coupling between P2 internal interpolation and P2/Q2

extrapolation results in a second-order treatment of BCs

Not easy to obtain a general-purpose implementation on genuinely
unstructured geometries
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Upwinding and point location

An (approximate) upwinding is performed along the advection flow
lines (higher order implementations are possible)
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Upwinding and point location

An (approximate) upwinding is performed along the advection flow
lines (higher order implementations are possible)

A local interpolation at the foot of a characteristic requires to locate
the point on the space grid

On structured grids, the point location has O(1) complexity

On unstructured grids, the element containing the point should be
located using adjacency information (no direct access)
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Algorithms for (efficient) point location

The fast location of a point on an unstructured triangular/tetrahedral grid
is a classical problem in computational geometry. Two major solutions are
available:

Quadtree/octree algorithms: the computational domain is
structured in a tree, and the search requires to visit the tree.

I Complexity of the visit is logarithmic
I Requires to build an additional data structure with additional

memory occupation

Walking algorithms: the algorithm walks along the computational
domain towards the final element.

I Complexity of the visit depends on the distance between the
starting and the final element (O( d

√
number of elements) in the

worst case, with d=dimension)
I No relevant additional data structure required
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Quadtree(/octree) algorithms

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

In this algorithm, a tree structure is associated to the mesh, starting
from a rectangle containing all the mesh. A rectangle is refined into
four subrectangles until:

It does not intersect the mesh, or

It intersects a number of triangles nt ∈ [1, q] (q = 3 in the example
above) and no vertex, or

It contains one vertex, regardless of the number of triangles
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Walking algorithms (1)

We will use here the barycentric walk. In this algorithm, moving from an
initial element:

If the barycentric coordinates w.r.t. the current element are all
positive, then the element contains the point; otherwise

If (at least) one barycentric coordinate is negative, then the
current element is updated by stepping to the element which faces
the point associated to the negative barycentric coordinate of
largest magnitude
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Walking algorithms (2)

In a preliminary phase, it might be necessary to construct the
matrix of adjacency between elements

The memory occupation for this structure is not critical

Each point location requires a walk from the initial to the final
element. On a regular Delaunay triangulation with N elements, the
complexity is asymptotically linear w.r.t. the distance (O(

√
N) in the

worst case)
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Speed-up strategies for BW

Comparison of quadtree (QT) versus barycentric walk (BW) strategies:

Quadtree

Best complexity for general point location problems – however, slower
than direct access (structured mesh)

Difficult to code

Requires relevant additional memory

Barycentric walk

Complexity depends on initialization, slower in the general case

Easy to code

Requires little additional memory

This motivates the search for a clever choice of the initial point X j to
initialize the BW (in practice, we can obtain O(1) complexity [CF21])
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Speed-up strategy A: following characteristics

The easiest choice is to start the walk from the node xj itself:

X j = xj .

Already used, in particular in combination with substepping along
trajectories

Sensitive to an increase of the Courant number
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Speed-up strategy B: using the previous time step

The second choice is to start the walk from the foot of the
characteristic at the previous time step:

X j = X∆(xj , tn; tn−1).

Provides the best guess in case of stationary advection terms

Less sensitive to an increase of the Courant number

Relatively scalable on SIMD architectures
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Speed-up strategy C: using a neighbouring node

The third choice is to start the walk from the foot of the characteristic of
a neighbouring node xi , at the same time step:

X j = X∆(xi , tn+1; tn).

Requires to build a spanning tree of the grid

Insensitive to an increase of the Courant number

Intrinsically serial
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Evaluation of the various strategies (1)

Once verified that complexity of the BW is linear w.r.t. the distance,
i.e.,

O
(
C1 + C2

‖X∆(xi , tn+1; tn)− X i‖
∆x

)
,

then the various strategies outlined result in a complexity

(A) O
(
C1 + C2

‖f (xi ,tn+1)‖∆t
∆x

)
I Heavy dependence on the (local) Courant number

(B) O
(
C1 + C2Lt

∆t2

∆x

)
I Light dependence on the (local) Courant number
I Takes advantage of (locally) stationary advection terms

(C) O ((C1 + C2) + C2Lx∆t)
I No dependence on the (local) Courant number
I Takes advantage of (locally) constant in space advection terms

In all three cases, we obtain O(1) cost under linear refinements
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Evaluation of the various strategies (2)

Typical behaviour of the various strategies in term of CPU time, for
varying time Lipschitz constant and as a function of the Courant number:
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Strategy A eventually becomes the worst choice at the increase of the
Courant number

Strategy B always performs the best for low or moderate Courant
numbers

Strategy C always performs the best for large Courant numbers
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Evaluation of the various strategies (3)

At a comparison with a structured triangulation, the walking strategy
(of type B in this case) may even turn to be faster. It is to be remarked
that the computation of barycentric coordinates is performed in both
cases to obtain the interpolate of the solution:
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Evaluation of the various strategies (4)

Last, we perform a comparison of the search strategy B with the
general-purpose Matlab function pointLocation:
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Barycentric-Walk (b)
N

To obtain a fair evaluation, the comparison is performed by replacing
pointLocation with a Mex-compiled version of the BW, resulting in a
speedup of 10–20 times.
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3D + Boundary conditions

(Loading...)

Straightforward adaptation of the BW strategies to the 3D case

However, BW may need to switch from an internal walk to a
boundary walk and vice versa
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CUDA parallelization

On a SIMD architecture, we can set in parallel form:
I Computation of feet of characteristics
I Point location on the grid
I Interpolation

A careful parallelization allows to obtain relevant speed-ups with a
relatively simple and unexpensive architecture

Test: plain advection, time-dependent transport field and boundary
conditions on the cylinder (0, 2)× B(0, 1).

u(x , y , z , t) = (0.5, 0.25 cos(2πt), 0.25 sin(πt))

Scheme: inviscid SL, point location via strategy B, P2 interpolation
I Space grids from about 1M to about 9M elements
I Average Courant numbers 4 to 8; number of time steps 16 to 64

Hardware: Intel i9–9900K, 16 cores, 3.6 GHz, 32 GB RAM; Nvidia
RTX–2080ti
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CUDA parallelized code

(Loading...)

Maximum serial CPU time about 300s, maximum CPU time in
parallel mode about 3.7s

Speed-ups ranging from 70x to 93x, higher for larger Courant
numbers and refined grids
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A preliminary 2D test

(Loading...)

Airfoil at Re = 5000

Barycentric walk-based point location, Chorin–Temam scheme, P2

interpolation
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Conclusions

Explicit SL advection–diffusion solvers seem a viable alternative to
reduce the complexity of more classical solvers in NSE codes

Various drawbacks of this class of schemes have been removed, or at
least reduced

First-order schemes work nicely, second-order in progress

GPU-based 3D implementation in progress, too – promising results so
far
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