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Introduction

Numerical optimization methods1

Gradient-based methods2

Newton,
Quasi-Newton,
Stochastic gradient descent.

Gradient-free methods3,4,5

Simulated annealing,
Particle swarm optimization,
Genetic algorithm.

Applications

Training of ANNs, improve
Machine Learning algorithms.

Efficient solution of large-scale
optimization problems.

1C. Totzeck. Trends in Consensus-Based Optimization, 2021
2L. Bottou, F. E. Curtis, J. Nocedal. Optimization Methods for Large-Scale Machine Learning, 2018.
3M. Fornasier, H. Huang, L. Pareschi, P. Sünnen. Consensus-based optimization on hypersurfaces:

well-posedness and mean-field limit, 2020
4S. Grassi, L. Pareschi. From particle swarm optimization to consensus based optimization, 2020
5D. Kalise,A. Sharma, M. V. Tretyakov. Consensus based optimization via jump-diffusion stochastic differential

equations,2022
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Introduction

Aim: study of efficient numerical methods for global optimization of
non-convex high dimensional functions.

Idea: combine Consensus based optimization method6,7 following a Kinetic
approach8 and Continuos Genetic algorithm9

6R. Pinnau, C. Totzeck, O. Tse, S. Martin.A consensus-based model for global optimization and its mean-field
limit, 2016

7J. A. Carrillo, Y-P Choi, C. Totzeck, O. Tse An analytical framework for a consensus-based global optimization
method, 2018

8A. Benfenati, G. Borghi, L. Pareschi. Binary interaction methods for high dimensional global optimization and
machine learning, 2022

9C. F. M. Toledo, L. Oliveira, P. M. França. Global optimization using a genetic algorithm with hierarchically
structured population, 2014
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Kinetic based optimization

Kinetic based optimization (KBO) methods are inspired from the study of
opinion dynamics and consensus formation.

Each agent in position x is subjected to a drift and a random
perturbation. Its post interaction position is

x ′ = x + νF (x̂(t)− x) + σF D(x)ξ, (1)

where
σF , νF are positive parameters and ξ a normally distributed random number,

D(x) is the diffusion matrix defined to be either

D(x) = |x̂(t)− x |Idd , isotropic
D(x) = diag{(x̂(t)− x)1, . . . (x̂(t)− x)d}, anisotropic

(2)

the term x̂(t) represent the estimate of the position of the global minimizer
and it is computed as

x̂(t) =

∫
Rd xe−αE(x)g(x , t)dx∫
Rd e−αE(x)g(x , t)dx

, (3)

for any probability g, where E is the cost function, according to Laplace’s
principle.
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Continuos Genetic algorithm

The Continuos Genetic Algorithm (GA) is biologically inspired and its
idea arises from natural selection process that mimics biological
evolution.

It selects individuals from the current population and uses them as
parents to produce the children for the next generation:

Parents (leaders) are chosen to be the ones with best position on the cost
function and do not modify their position.

Children (followers) are subjected to crossover

with rate νF ⇒ x ′ = x∗,

with rate 1− νF ⇒ x ′ = x ,
(4)

and mutations of the type

x ′ = x + σF ξ, standard GA

x ′ = x + σF D(x)ξ, modified GA
(5)

where x , x∗ denotes the pre-interaction positions of a follower and a leader
respectively, x ′ denotes the post-interaction position of a follower, νF , σF are
positive parameters, ξ is a normal distributed random number and D(x) a
diffusion matrix.
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Relaxed Genetic kinetic based algorithm

The relaxed GKBO method10

To each agent with associate a position x and a label λ ∈ {0, 1}:
if λ = 0 then the agent is in the followers status;
if λ = 1 then the agent is in the leaders status.

Each pair of agents (x , λ), (x∗, λ∗) interact toward the following binary
interactions rules{

x ′ = x + (νF (x∗ − x) + σF D(x)ξ) (1− λ)λ∗ + νL
β

(x̂(t)− x)λ,

x ′∗ = x∗,
(6)

with
νL, β, σF , νF are positive parameters,

D(x) is the diffusion matrix defined as in (2),

ξ a normally distributed random number,

the term x̂(t) represent the estimate of the position of the global minimizer.

combines the ideas of the KBO and the standard genetic algorithm.

10G. Albi, F.F. and C. Totzeck. Relaxed Genetic Kinetic based optimization methods, in
preparation.
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Rastrigin function: videos
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Mean-field derivation

The evolution of the density function

f = f (x , λ, t), f : Rd × {0, 1} × R+ → R+ (7)

is described by the integro-differential equation of Boltzmann type that in
weak form reads

∂

∂t

∫
Rd

fλ(x , t)φ(x)dx −
∫
Rd
T [fλ](x , t)φ(x)dx =

η
∑

λ∗∈{0,1}

〈∫
R2d

[
φ(x ′)− φ(x)

]
fλ(x , t)fλ∗(x∗, t)dxdy

〉
,

(8)

for any test function φ ∈ C∞(Rd ), η > 0 where for simplicity we write
fλ(x , t) = f (x , λ, t), and where T [fλ](x , t) describes the leaders-followers
change of label.
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Mean-field derivation

Introduce the scaling parameter ε > 0 and consider the scaling

νF →
νF

ρ1
ε, νL →

νL

ρ1
ε, σF →

σF

ρ1

√
ε, η → 1

ε
. (9)

where ρ1 denotes the leaders mass.

Consider a Taylor expansion of the test function φ(x ′) centred in x .

Plug it in to equation (8) and integrate by parts to get the equations that
in strong form read

∂

∂t
f0(x , t)− T [f0](x , t) =

σ2
F

2
∆x

[
D2(x)f0(x , t)

]
+ νF∇x ·

[(m1(t)
ρ1
− x
)

f0(x , t)
]
,

∂

∂t
f1(x , t)− T [f1](x , t) =

νL

βρ1
∇x ·

[(
x̂(t)− x

)
f1(x , t)

]
,

(10)

where m1(t) denotes the leaders mean at time t .

Rigorous derivation of the grazing collision limit is done in 11.

11L. Pareschi and G. Toscani. Interacting multiagent systems: kinetic equations and Monte Carlo
methods, 2013.
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Leaders emergence

The transition operators acts as follows

T [f ](x , 0, t) =πL→F (x , λ; f )f (x , 1, t)− πF→L(x , λ; f )f (x , 0, t),

T [f ](x , 1, t) =πF→L(x , λ; f )f (x , 0, t)− πL→F (x , λ; f )f (x , 1, t),
(11)

where πF→L(·) and πL→F (·) are certain transition rates. Leaders can emerge:

randomly with constant rates

πL→F = qLF , πF→L = qFL,

with qLF , qFL > 0;

according to a weighted strategy: associate to each agent a weight
ω(x , t) dependent on their position on the cost function, then

πL→F =

{
1, if ω(x , t) > ω̄,

0, if ω(x , t) ≤ ω̄,
πF→L =

{
0, if ω(x , t) ≥ ω̄,
1, if ω(x , t) < ω̄,

where ω̄ is a certain threshold;

according to a mixed strategy combing the two.
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Moments estimates and convergence to the global minimum

Define
m(t) = m0(t) + m1(t), V (t) = v0(t) + v1(t), (12)

where

m0(t) =

∫
Rd

x f0(x , t)dx , m1(t) =

∫
Rd

x f1(x , t)dx ,

v0(t) =

∫
Rd

∣∣∣x − m0

ρ0

∣∣∣2f0(x , t)dx , v1(t) =

∫
Rd

∣∣∣x − m1

ρ1

∣∣∣2f1(x , t)dx .

(13)

to be the mean and variance of fλ(x , t) for λ ∈ {0, 1}.

Following the idea in12,13 we state the following Propositions, showing
the decay of the variance and proving the convergence to the global
minimum.

12A. Benfenati, G. Borghi, L. Pareschi. Binary interaction methods for high dimensional global
optimization and machine learning, 2022

13J. A. Carrillo, Y-P Choi, C. Totzeck, O. Tse An analytical framework for a consensus-based
global optimization method, 2018
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Moments estimates

Proposition (G.Albi, F.F., C.Totzeck)

Suppose to be in the stationary state and that the transition rates are
constant. Assume the cost function E(x) positive and for all x ∈ Rd

E := inf
x
E(x) ≤ E(x) ≤ sup

x
E(x) := E . (14)

Thus, if
νL

β
= νF , νF > max

{
kσ2

F eα(Ē−E)

2
,
ρ1

2

}
(15)

with k = d in the case of isotropic diffusion and k = 1 in the case of
anisotropic diffusion, then

V (t)→ 0, for t →∞.
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Idea of the proof

By direct computation, show that

dV (t)
dt

≤ Cv V (t) + Cm

(
m0(t)
ρ0
− m1(t)

ρ1

)2

, (16)

for some constant Cv , Cm > 0.

Show that (
m0(t)
ρ0
− m1(t)

ρ1

)2

→ 0, for t →∞,

and in particular that it is bounded from above by a certain constant C̄.

Apply Grönwall lemma in (16) to show

V (t) ≤
(
V (0) + Cm C̄ t

)
e−Cv t .

Take the limit t →∞ to get V (t)→ 0.
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Convergence to global minimum

Proposition (G.Albi, F.F., C.Totzeck)

Suppose the same assumptions of Proposition 1 hold. Furthermore, assume
the cost function E ∈ C2(Rd ) and that ∃c1, c2 > 0 s.t.

sup
y∈R2
|∇E(y)| ≤ c1, sup

y∈R2
|∆E(y)| ≤ c2. (17)

Choose the parameters s.t.
µ

M2
α(0)

≤ 3
4
, (18)

with µ a certain constant dependent on the parameters, and

Mα(t) =

∫
Rd

e−αE(x)g(x)dx . (19)

Then ∃ x̃ ∈ Rd s.t. m(t)→ x̃ as t →∞ and

E(x̃) = E . (20)
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Numerical methods14

Algorithm (Relaxed GKBO)

1. Given Ns samples (x0
i , λ

0
i ) from the initial distribution fλ(x , 0).

2. Compute x̂0 as in equation (3).
3. while n < Nt and j < jstall

1 for i = 1 to Ns
Select randomly a leader with position yn

k , k 6= i .
Compute the positions change xn+1

i as

xn+1
i = xn

i + νF h
(
yn

k − xn
i
)

+ σF
√

hDξ
(
1− λn

i
)

+ h
νL

β
(x̂n − xn

i )λn
i . (21)

if λn
i = 0, with probability h πF→L agents i becomes a leader: λn+1

i = 1.
if λn

i = 1, with probability h πL→F agents i becomes a follower: λn+1
i = 0.

end for
2 Compute x̂n+1 as in equation (3).
3 if ‖x̂n+1 − x̂n‖∞ ≤ δstall

j ← j + 1

end if

end while

14K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. i. monocomponent
gases, 1980.
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Numerical experiments

Consider the Rastrigin function as benchmark function.

Fix νF = 1, νL = 4, β = 0.4.

Run M = 20 simulations and consider one successful if

‖x̂(t)− x̄‖∞ ≤ 0.25,

with x̄ defined to be the position of the global minimizer.

Leaders dependence. In the Table the iterations number (success rate) for
the GKBO algorithm as the leaders mass at the equilibrium ρ∞1 varies for
σF = 4 and d = 20.

GKBO random GKBO p̄ = 0.1 GKBO weighted
ρ∞1 = 0.05 1927 (0.15) 1488 (1) 3029 (1)
ρ∞1 = 0.1 1496 (1) 1578 (1) 2938 (1)
ρ∞1 = 0.15 1862 (1) 2181 (1) 3014 (1)
ρ∞1 = 0.2 – 4749 (0.6) 3073 (1)

The success rate and iterations number for the KBO algorithm are 1 and
7000 respectively.
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Numerical experiments

Success rate as both the diffusion parameter and the dimension vary.
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Figure: Success rate as σF and d vary with dynamics simulated with the GKBO
method. On the left, random leaders generation. In the centre, mixed strategy with
p̄ = 0.1. On the right, weighted leaders generation.
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Numerical experiments

Success rate and iterations number as the diffusion parameters varies.

Figure: Success rate and iterations number as σF varies for d = 20 with dynamics
simulated with the GKBO, KBO, GA methods.
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Numerical experiments

Success rate and iterations number as the dimension varies.

Figure: Success rate and iterations number as d varies for σF = 4 with dynamics
simulated with the GKBO, KBO, GA methods.
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Numerical experiments

Accuracy of the KBO and the GKBO algorithms.

F
 = 0.1

F
 = 1

F
 = 2

F
 = 4

F
 = 6

F
 = 8

Figure: Accuracy of the KBO (first row) and GKBO (second row) algorithms as σF
varies for d = 8 with dynamics simulated with the GKBO, KBO, GA methods.
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Numerical experiments

Success rate and iterations number for different benchmark functions15

Figure: Success rate and iterations number for d = 20 and σF = 3.5 with dynamics
simulated with the GKBO method and with the KBO method.

15M. Jamil and X.-S. Yang. A literature survey of benchmark functions for global optimisation
problems, 2013
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Conclusions and perspectives

We have introduced an efficient numerical methods for global
optimization of non-convex high dimensional functions gluing together
the ideas of the KBO and the GA algorithms.

Results about convergence to the global minimizer are still valid.

By introducing leaders, it is possible to improve the success rate and to
reduce the iterations number of the considered algorithms.

Future plan: extended this algorithm to localized versions useful to
minimize functions with multiple global minima.

Thank you for your attention!
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