Monte Carlo methods for kinetic equations

Giacomo Dimarco

Department of Mathematics and Computer Sciene & Center for Modeling Computing and Statistics CMCS University of Ferrara, Italy

Main collaborators: L. Pareschi (Ferrara, Italy), N. Crouseilles (INRIA, France), M. Lemou (CNRS, France), A. Crestetto (University of Nantes, France)

Workshop PRIN:

Innovative numerical methods for evolutionary partial differential equations and applications Catania, February 20-22, 2023

- ¹ [Introduction and Direct Simulation Monte Carlo methods](#page-2-0)
- ² [Exponential methods](#page-11-0)
- ³ [Time diminishing methods](#page-20-0)
- ⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

Outline

¹ [Introduction and Direct Simulation Monte Carlo methods](#page-2-0)

[Exponential methods](#page-11-0)

[Time diminishing methods](#page-20-0)

⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

Monte Carlo integration

Consider the simple integral

$$
I[f] = \int_{[0,1]^d} f(x)dx, \quad d \ge 1,
$$

if x is a random vector uniformly distributed in $[0,1]^d$ we have $I[f] = E[f(x)]$, where $E[\cdot]$ denotes the expectation. If $\{x_n\}$ is a sequence of pseudo-random vectors uniform in $[0, 1]^d$ then

$$
I_N[f] = \frac{1}{N} \sum_{n=1}^{N} f(x_n), \quad E[I_N[f]] = I[f].
$$

For the law of large numbers it converges in probability¹

$$
\lim_{N \to \infty} I_N[f] = I[f],
$$

and

$I[f] - I_N[f] \approx \sigma_f N^{-1/2} w$, $E[(I[f] - I_N[f])^2] = \sigma_f N^{-1/2}$,

where σ_f^2 is the variance of f and w is a normal random variable. Note that there is no dependence on the dimension.

Remark: The convergence rate for a deterministic grid based quadrature is $O(N^{-k/d})$ for an order k method. Thus Monte Carlo is "better" if $k/d \leq 1/2$.

¹W.Feller '71, R.E.Caflisch '98

Reconstruction

Given a set of N samples $\xi_1, \xi_2, \ldots, \xi_N$ the probability density is defined by

$$
f(x) = \frac{1}{N} \sum_{k=1}^{N} \delta(x - \xi_k).
$$

The simplest method, which produces a piecewise constant reconstruction, is based on evaluating the histogram of the samples at the cell centers of a grid

$$
f(x_{j+1/2}) = \frac{1}{N} \sum_{k=1}^{N} \Psi(\xi_k - x_{j+1/2}), \quad j = \dots, -2, -1, 0, 1, 2, \dots
$$

where $\Psi(x) = 1/\Delta x$ if $|x| \leq \Delta x/2$ and $\Psi(x) = 0$ elsewhere.

The kinetic model

In the Boltzmann description of RGD, the density $f = f(x, v, t)$ of particles follows the equation

$$
\frac{\partial f}{\partial t}+v\cdot \nabla_x f=\frac{1}{\varepsilon}Q(f,f),\quad x\in \Omega\subset \mathbb{R}^3, v\in \mathbb{R}^3,
$$

The parameter $\varepsilon > 0$ is called Knudsen number and it is proportional to the mean free path between collisions. The bilinear collisional operator $Q(f, f)$ is given by

$$
Q(f,f)(v)=\int_{\mathbb{R}^3}\int_{S^2}B(|v-v_*|,\omega)(f(v')f(v'_*)-f(v)f(v_*))dv_*d\omega,
$$

where ω is a vector of the unitary sphere $S^2\subset \mathbb{R}^3$ and for simplicity the dependence of f on x and t has been omitted.

The collisional velocities (v', v'_*) are given by the relations

$$
v' = \frac{1}{2}(v + v_* + |q|\omega), \quad v'_* = \frac{1}{2}(v + v_* + |q|\omega),
$$

where $q = v - v_*$ is the relative velocity.

Collision details

The kernel B characterizes the details of the binary interactions. The classical *Variable Hard* Spheres (VHS) model used for RGD simulations is

 $B(|q|, \omega) = K|q|^{\alpha}, \quad 0 \leq \alpha < 1,$

where K is a positive constant. The case $\alpha = 0$ corresponds to a *Maxwellian gas*, while $\alpha = 1$ is called a Hard Sphere Gas.

The collisional operator is such that the H -Theorem holds

Z $Q(f, f) \log(f) dv \leq 0.$

This condition implies that each function f in equilibrium (i.e. $Q(f, f) = 0$) has locally the form of a Maxwellian distribution

$$
M(\rho, u, T)(v) = \frac{\rho}{(2\pi T)^{3/2}} \exp \left(-\frac{|u - v|^2}{2T}\right),\,
$$

where ρ, u, T are the *density*, the *mean velocity* and the gas *temperature*

$$
\rho = \int_{\mathbb{R}^3} f dv, \quad \rho u = \int_{\mathbb{R}^3} f v dv, \quad T = \frac{1}{3\rho} \int_{\mathbb{R}^3} (v - u)^2 f dv.
$$

Hydrodynamic equations

- **If we consider the Boltzmann equation and multiply it for the elementary collisional** *invariants* $1, v, |v|^2$ and integrate in v we obtain a system of conservation laws corresponding to conservation of mass, momentum and energy.
- Clearly the differential system is not closed since it involves higher order moments of the function f.
- **•** Formally as $\varepsilon \to 0$ the function f is locally replaced by a Maxwellian. In this case it is possible to compute f from its low order moments thus obtaining to leading order the closed system of compressible Euler equations

$$
\frac{\partial \rho}{\partial t} + \sum_{i=1}^{3} \frac{\partial}{\partial x_i} (\rho u_i) = 0,
$$

$$
\frac{\partial}{\partial t} (\rho u_j) + \sum_{i=1}^{3} \frac{\partial}{\partial x_i} (\rho u_i u_j) + \frac{\partial}{\partial x_j} p = 0, \quad j = 1, 2, 3
$$

$$
\frac{\partial E}{\partial t} + \sum_{i=1}^{3} \frac{\partial}{\partial x_i} (E u_i + p u_i) = 0,
$$

where $p = \rho T$.

DSMC basics

- Initialize system with particles (x_i, v_i) , $i = 1, ..., N$ (sampling). \bullet
- **O** Loop over time steps of size Δt .
- Create particles at open boundaries. \bullet
- Move all the particles $x_i = x_i + v_i \Delta t$ (*transport step*).
- **•** Process any interactions of particle and boundaries (*Maxwell's b.c.*).
- **•** Sort particles into cells.
- Select and execute random collisions (collision step).
- Compute average statistical values. 0

DSMC for the collision step

- We will describe the *classical DSMC methods* due to Nanbu in the case of spatially homogeneous Boltzmann equations².
- We assume that the kinetic equations can be written in the form

$$
\frac{\partial f}{\partial t} = \frac{1}{\varepsilon} [P(f, f) - \mu f],
$$

where $\mu > 0$ is a constant and $P(f, f)$ is a non negative bilinear operator s.t.

$$
\frac{1}{\mu}\int_{\mathbb{R}} P(f,f)(v)\phi(v)\,dv = \int_{\mathbb{R}} f(v)\phi(v)\,dv, \quad \phi(v) = 1, v, v^2.
$$

For the BGK equation $P(f, f) = \mu M(\rho, u, T)(v)$, for the Boltzmann equation in the Maxwellian case

$$
P(f, f) = Q^+(f, f)(v) = \int_{\mathbb{R}^3} \int_{S^2} b_0(\cos \theta) f(v') f(v'_*) \, d\omega \, dv_*,
$$

and $\mu = 4\pi \rho$.

The case of general VHS kernels is different and it will not discussed.

²G.Bird '63, K.Nanbu '83

Nanbu's method (DSMC no time counter)

- We assume that f is a probability density, i.e. $\rho = \int_{-\infty}^{+\infty} f(v, t) dv = 1$.
- **O** Consider a time interval $[0, t_{\text{max}}]$, and discretize it in n_{TOT} intervals of size Δt .
- Let $f^{n}(v)$ be an approximation of $f(v,n\Delta t)$. The forward Euler scheme writes

$$
f^{n+1} = \left(1 - \frac{\mu \Delta t}{\epsilon}\right) f^n + \frac{\mu \Delta t}{\epsilon} \frac{P(f^n, f^n)}{\mu}.
$$

- Clearly if f^n is a probability density both $P(f^n, f^n)/\mu$ and f^{n+1} are probability densities. Thus the equation has the following probabilistic interpretation.
- \bullet Physical level: a particle with velocity v_i will not collide with probability $(1 \mu \Delta t/\epsilon)$, and it will collide with probability $\mu \Delta t / \epsilon$, according to the collision law described by $P(f^n, f^n)(v)$.
- Monte Carlo level: to sample v_i from f^{n+1} with probability $(1 \mu \Delta t/\epsilon)$ we sample from f^n , and with probability $\mu \Delta t / \epsilon$ we sample from $P(f^n, f^n)(v) / \mu$.

Note that $\Delta t \leq \epsilon/\mu$ to have the probabilistic interpretation. For the BGK model the algorithm is straightforward since sampling from $P(f, f)/\mu$ is simply sampling from a Maxwellian.

Outline

[Introduction and Direct Simulation Monte Carlo methods](#page-2-0)

² [Exponential methods](#page-11-0)

- [Time diminishing methods](#page-20-0)
- ⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

Decomposition of the collision operator

Let us rewrite the collision step as

$$
\frac{\partial f}{\partial t} = \frac{1}{\varepsilon} \left[P(f, f) - \mu f \right],
$$

where $P(f, f) = Q(f, f) + \mu f$ and $\mu > 0$ is such that $P(f, f) \ge 0$. By construction we have

$$
\frac{1}{\mu}\int_{\mathbb{R}^3}\phi(v)P(f,f)\,dv=\int_{\mathbb{R}^3}\phi(v)f\,dv.
$$

Thus $P(f, f)/\mu$ is a density function and we take the *micro-macro* decomposition

 $P(f, f)/\mu = M + a$.

Inserting the above decomposition into the collision step leads to

$$
\partial_t f = \frac{\mu}{\varepsilon} g + \frac{\mu}{\varepsilon} (M - f) = \frac{\mu}{\varepsilon} \left(\frac{P(f, f)}{\mu} - M \right) + \frac{\mu}{\varepsilon} (M - f).
$$

Exponential Runge-Kutta methods

Let us consider a system of ODEs of the type

 $y' = G(y) + \lambda(E - y), \quad y(t_0) = y_0,$

where $G(y) = 0 \Leftrightarrow y = E$ and $E' = 0$. The general form of an explicit exponential Runge-Kutta method is

Exponential Runge-Kutta

$$
Y^{(i)} = e^{-c_i \lambda \Delta t} y_n + (1 - e^{-c_i \lambda \Delta t}) E_n + \Delta t \sum_{j=1}^{i-1} A_{ij} (\lambda \Delta t) G(Y^{(j)}), i = 1, ..., \nu
$$

$$
y_{n+1} = e^{-\lambda \Delta t} y_n + (1 - e^{-\lambda \Delta t}) E_n + \Delta t \sum_{i=1}^{\nu} W_i (\lambda \Delta t) G(Y^{(i)}),
$$

where $c_i \geq 0$, and the coefficients A_{ij} and the weights W_i are such that

$$
A_{ij}(0) = a_{ij}, \quad W_i(0) = w_i, \quad i, j = 1, \dots, \nu
$$

with a_{ij} and w_i given by a standard explicit Runge-Kutta method called the *underlying method*.

IF-RK methods

- \bullet The two most popular approaches to get exponential schemes are the integrating factor (IF) and the exponential time differencing (ETD) methods.
- **•** For the so-called *Integrating Factor* methods we have

$$
A_{ij}(\lambda \Delta t) = a_{ij}e^{-(c_i - c_j)\lambda \Delta t}, \quad i, j = 1, ..., \nu, \quad j > i
$$

$$
W_i(\lambda \Delta t) = w_i e^{-(1 - c_i)\lambda \Delta t}, \quad i = 1, ..., \nu.
$$

 \bullet The underlying Runge-Kutta schemes are characterized by the matrice $A = (a_{ij})$ such that the resulting scheme is explicit and the coefficient vector $w = (w_1,..,w_{\nu})^T.$ The schemes described can be represented by the so-called Butcher tableau

$$
\begin{array}{c|c} c & A \\ \hline & \omega^T \end{array}
$$

where the coefficients c used for the treatment of non autonomous systems, are given by the usual relation $c_i = \sum_{j=1}^i a_{ij}$

Exponential schemes for the Boltzmann equation

When applied to the Boltzmann equation the first order IF-RK scheme gives

$$
f^{n+1} = e^{-\mu \Delta t/\varepsilon} f^n + \frac{\mu \Delta t}{\varepsilon} e^{-\mu \Delta t/\varepsilon} \frac{P(f^n, f^n)}{\mu} + \left(1 - e^{-\mu \Delta t/\varepsilon} - \frac{\mu \Delta t}{\varepsilon} e^{-\mu \Delta t/\varepsilon}\right) M.
$$

- \bullet Note that again the scheme is a convex combination of particle densities independently of $\Delta t/\varepsilon$ and satisfies conservations, nonnegativity and asymptotic preservation.
- \bullet Higher order schemes can be constructed in the same way. For instance a second order IF-RK scheme based on midpoint is given by

$$
f^* = e^{-\frac{\mu \Delta t}{2\varepsilon}} f^n + \frac{\mu \Delta t}{2\varepsilon} e^{-\frac{\mu \Delta t}{2\varepsilon}} \frac{P(f^n, f^n)}{\mu} + \left(1 - e^{-\frac{\mu \Delta t}{2\varepsilon}} - \frac{\mu \Delta t}{2\varepsilon} e^{-\frac{\mu \Delta t}{2\varepsilon}} \right) M
$$

$$
f^{n+1} = e^{-\frac{\mu \Delta t}{\varepsilon}} f^n + \frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{2\varepsilon}} \frac{P(f^*, f^*)}{\mu} + \left(1 - e^{-\frac{\mu \Delta t}{\varepsilon}} - \frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{2\varepsilon}} \right) M.
$$

It is easy to verify that even this scheme is convex independently of $\Delta t/\varepsilon$. So it satisfies conservations, nonnegativity and asymptotic preservation.

[Exponential methods](#page-11-0)

Boltzmann equation: 4th order moment

L2-error for first and second order IF scheme.

[Exponential methods](#page-11-0)

Sod test: heat flux for

Heat flux at $t = 0.05$ for Strang splitting and IF-2 with $\Delta t / \Delta t_E = 2$.

Sod test: heat flux for

Heat flux at $t = 0.05$ for simple splitting and IF-1 with $\Delta t/\Delta t_E = 10$.

Sod test: heat flux for

Heat flux at $t = 0.05$ for Strang splitting and IF-2 with $\Delta t/\Delta t_E = 10$.

Outline

[Introduction and Direct Simulation Monte Carlo methods](#page-2-0)

[Exponential methods](#page-11-0)

³ [Time diminishing methods](#page-20-0)

⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

Derivation of the micro-macro model

 \bullet The distribution function f is rewritten accordingly to the following decomposition

$$
f = M + g, \text{ with } M = \frac{\rho}{(2\pi T)^{d/2}} \exp\left(-\frac{|v - u|^2}{2T}\right).
$$

 \bullet Now, since $M[U]$ and f shares the same first three moments, we have

$$
U(t,x)=\int_{\mathbb{R}^d}m(v)f(t,x,v)dv=\int_{\mathbb{R}^d}m(v)M(t,x,v)dv,
$$

• Then the kinetic equation writes

$$
\partial_t M + \partial_t g + v \cdot \nabla_x M + v \cdot \nabla_x g = -\frac{\nu}{\varepsilon} g.
$$

Denoting by Π_M the orthogonal projection in $\mathscr{N}(L_Q) = \mathsf{Span}\left\{M, vM, |v|^2 M\right\}$ the null space of the operator Q

$$
\Pi_M(\varphi)=\frac{1}{\rho}\left[\langle\varphi\rangle+\frac{(v-u)\langle (v-u)\varphi\rangle}{T}+\left(\frac{|v-u|^2}{2T}-\frac{1}{2}\right)\left\langle\left(\frac{|v-u|^2}{T}-1\right)\varphi\right\rangle\right]M
$$

[Time diminishing methods](#page-20-0)

The micro-macro model for the Navier-Stokes equation

 \bullet The micro-macro model for the unknowns (g, U) , equivalent to the kinetic BGK equation, can be written as follows with $\mathscr{T}\phi = v \cdot \nabla_x \phi$

$$
\partial_t g + (I - \Pi_M) \mathscr{T} g = \frac{\nu}{\varepsilon} \left[-g - \frac{\varepsilon}{\nu} (I - \Pi_M) \mathscr{T} M \right],
$$

$$
\partial_t U + \nabla_x \cdot F(U) + \nabla_x \cdot \langle v m(v) g \rangle = 0,
$$

• Let us consider now a second decomposition

$$
f=f_0+\varepsilon f_1+g, \text{ with } f_0=M, \text{ and } f_1=-(I-\Pi_M)\mathscr{T}M.
$$

Injecting the above decomposition into the kinetic equation and applying the projection operator Π_M gives

$$
\partial_t M + \Pi_M(v \cdot \nabla_x M) + \Pi_M(v \cdot \nabla_x (f_1 + g)) = 0
$$

• This is equivalent to the following equation on the moments U

$$
\partial_t U + \nabla_x \cdot F(U) + \varepsilon \mathscr{D}U + \nabla_x \cdot \langle v m(v) g \rangle = 0,
$$

with $\mathscr{D}U = \nabla_x \cdot \langle v m(v) (I - \Pi_M) \mathscr{T}M \rangle$.

A new Time Diminishing Asymptotic Preserving class of methods for kinetic equations II

With the previous decomposition the microscopic part reads

$$
\partial_t g + (I - \Pi_M)(v \cdot \nabla_x g) = -\frac{\nu}{\varepsilon} (g + \varepsilon (I - \Pi_M)(\partial_t f_1 + v \cdot \nabla_x f_1)).
$$

The scheme can be summarized by the following steps, at each time step t^n

- Solve the kinetic equation for the perturbation part using a particle method. This will give the perturbation values at time $(n + 1)$.
- **Solve the macroscopic part with a finite volume method where particles are used to** evaluate the perturbation terms. This gives the moments value $U^{n+1}.$
- \bullet Modify the perturbation g at time $n+1$ to ensure the zero-moments property at the particle level.
- **Eliminate particles with same speed and different sign in order to reduce the global** computational cost.

Solving the kinetic equation for the perturbation

We consider the solution in a time interval $[0, \Delta t]$ by an operator splitting between transport

$$
\partial_t g + \mathscr{T} g = 0,
$$

and the source terms respectively for the first and the second decompositions

$$
\partial_t g = -\frac{\nu g}{\varepsilon} + \Pi_M \mathcal{T} g - (I - \Pi_M) \mathcal{T} M,
$$

$$
\partial_t g = \Pi_M \mathcal{T} g - \frac{\nu}{\varepsilon} (g + \varepsilon (I - \Pi_M) (\partial_t f_1 + v \cdot \nabla_x f_1)).
$$

The distribution q is approximated by a finite set of N particles

$$
g(t,x,v) = \sum_{k=1}^{N} \omega_k \delta(x - x_k(t)) \delta(v - v_k(t)),
$$

where $x_k(t)$ represents the position, $v_k(t)$ the velocity and $\omega_k = \pm m_p$ the weight of each particle.

Solving the kinetic equation II

The transport step solves the characteristic equations, which corresponds to push the particles: $x_k^{n+1} = x_k^n + \Delta t \, v_k^n.$ The second part reads, for the first decomposition

$$
g^{n+1} = g^* - \frac{\Delta t \nu}{\varepsilon} g^{n+1} + \Delta t \left[\Pi_M \mathcal{T} g^n - (I - \Pi_M) \mathcal{T} M^n \right],
$$

which gives

$$
g^{n+1} = \frac{\varepsilon/\nu}{\varepsilon/\nu + \Delta t}g^* + \frac{\Delta t}{\varepsilon/\nu + \Delta t} \mathscr{P}[g^n, M^n].
$$

and for the second decomposition

$$
g^{n+1} = g^* - \frac{\Delta t \nu}{\varepsilon} g^{n+1} + \Delta t \left[\Pi_M \mathcal{T} g^n - \varepsilon (I - \Pi_M)(\partial_t f_1 + v \cdot \nabla_x f_1) \right],
$$

which gives

$$
g^{n+1} = \frac{\varepsilon/\nu}{\varepsilon/\nu + \Delta t}g^* + \frac{\Delta t}{\varepsilon/\nu + \Delta t}\mathscr{P}_1[g^n, f_1^n].
$$

where g^* represents the solution after the transport step.

[Time diminishing methods](#page-20-0)

Monte Carlo vs Time Diminishing scheme : density profile

Figure: Right Monte Carlo, Left Time Diminishing scheme, $\varepsilon = 10^{-2}$ and $\varepsilon = 10^{-3}$.

[Time diminishing methods](#page-20-0)

Number of particles employed for the solution

Outline

[Introduction and Direct Simulation Monte Carlo methods](#page-2-0)

- **[Exponential methods](#page-11-0)**
- [Time diminishing methods](#page-20-0)

⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

A deviational Monte Carlo for the Boltzmann equation

• The starting point is again the following decomposition

$$
f(v,t) = M(v) + g(v,t)
$$

with $\int_{\mathbb{R}^{d_v}} \phi(v) g(v, t) dv = 0.$

 \bullet We rewrite the space homogeneous Boltzmann using this new variable $q(v, t)$ as

$$
\frac{\partial (ge^{\mu t/\varepsilon})}{\partial t} = \frac{1}{\varepsilon} \Big(P(M+g, M+g) - \mu M \Big) e^{\mu t/\varepsilon}
$$

$$
= \frac{1}{\varepsilon} \Big(P(M,M) + P(g,g) + P(M,g) + P(g,M) - \mu M \Big) e^{\mu t/\varepsilon}
$$

where we used the bilinearity property of the gain operator P .

• By noticing that $P(M, M) = \mu M$, we finally have

$$
\frac{\partial \left(g e^{\mu t/\varepsilon} \right)}{\partial t} = \frac{1}{\varepsilon} \Big(P(g,g) + P(M,g) + P(g,M) \Big) e^{\mu t/\varepsilon}.
$$

A deviational Monte Carlo for the Boltzmann equation II

Now by applying a first order explicit Runge-Kutta method we get

$$
g^{n+1} = e^{-\frac{\mu \Delta t}{\varepsilon}}g^n + \frac{\mu \Delta t}{\varepsilon}e^{-\frac{\mu \Delta t}{\varepsilon}}\left(\frac{P(g^n,g^n) + P(g^n,M) + P(M,g^n)}{\mu}\right).
$$

 \bullet We divide the perturbation q into a difference of two positive parts:

$$
g(v,t) = g_p(v,t) - g_m(v,t)
$$

where $g_p(v, t) := \max(g(v, t), 0)$ and $g_m(v, t) := -\min(g(v, t), 0)$.

- **In the above decomposition, both parts are positive,** $g_p(v, t) \geq 0$ and $q_m(v, t) \geq 0, \ \forall v \in \mathbb{R}^{d_v}$
- **Consequently they can then be reinterpreted as probability distributions once suitably** normalized.

A deviational Monte Carlo for the Boltzmann equation III

Now, we can write

$$
g_p^{n+1} - g_m^{n+1} = e^{-\frac{\mu \Delta t}{\varepsilon}} (g_p^n - g_m^n) +
$$

$$
\frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} \left(\frac{P(g_p^n, g_p^n) + P(g_p^n, M) + P(M, g_p^n) + P(g_m^n, g_m^n)}{\mu} \right)
$$

$$
-\frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} \left(\frac{P(g_p^n, g_m^n) + P(g_m^n, M) + P(M, g_m^n) + P(g_m^n, g_p^n)}{\mu} \right).
$$

Then, since P is positive, one deduces the equations for the g_p^{n+1} and g_m^{n+1}

$$
g_p^{n+1} = \hspace{-1mm}e^{-\frac{\mu \Delta t}{\varepsilon}} g_p^{n} + \frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} \left(\frac{P(g_p^{n},g_p^{n})+P(g_p^{n},M)+P(M,g_p^{n})+P(g_m^{n},g_m^{n})}{\mu} \right),
$$

and

$$
g_m^{n+1} = \hspace{-1ex}\begin{array}{ll} \displaystyle e^{-\frac{\mu \Delta t}{\varepsilon}}g_m^{n} + \frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} \left(\frac{P(g_p^{n},g_m^{n})+P(g_m^{n},M)+P(M,g_m^{n})+P(g_m^{n},g_p^{n})}{\mu} \right). \end{array}
$$

We now approximate the two distributions $g_p(v, t)$ and $g_m(v, t)$ by a finite set of N_p and N_m particles

$$
g_p(v,t) \approx m \sum_{k=1}^{N_p(t)} \delta_{v_{p,k}(t)}(v),
$$

$$
g_m(v,t) \approx m \sum_{k=1}^{N_m(t)} \delta_{v_{m,k}(t)}(v),
$$

A deviational Monte Carlo for the Boltzmann equation IV

- **Compute the initial velocities of the particles belonging to the approximation of** $g_p(v, t = 0)$ and $g_m(v, t = 0)$: $\{v_{p,1}(t = 0),..,v_{p,N_p}(t = 0)\}$, $\{v_{m,1}(t = 0),..,v_{m,N_m}(t = 0)\}$.
- from $n = 1$ to $n = n_{fin}$
	- discard $ND_p = \text{Iround}\left((1 e^{-\frac{\mu \Delta t}{\varepsilon}} \frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}})N_p(t)\right)$.
	- discard $ND_m = \text{Iround}\left((1 e^{-\frac{\mu \Delta t}{\varepsilon}} \frac{\mu \Delta t}{\varepsilon}e^{-\frac{\mu \Delta t}{\varepsilon}})N_m(t)\right)$.
	- sampling of $P(g, g)/\mu_g$: keep a fraction $NC_1 = \text{Tround}\left(\frac{\mu_g \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} (N_p(t) + N_m(t))\right).$
	- sampling of $P(q, M)/\mu$: keep a fraction $NC_2 = \text{Iround}\left(\frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} (N_p(t) + N_m(t))\right).$
	- sampling of $P(M, q)/\mu$: keep a fraction $NC_3 = \text{Iround}\left(\frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} (N_p(t) + N_g(t))\right).$
- **•** end loop over time

The number of particles increases with time. Remedy have to be studied.

Discarding particles

In details, the collisional step causes the introduction of the following number of particles

$$
NC(t) = \text{Iround}\left(\frac{\mu \Delta t}{\varepsilon} e^{-\frac{\mu \Delta t}{\varepsilon}} (N_p(t) + N_g(t))(2 + \mu_g/\mu)\right).
$$

The total number of particles after one time step is consequently given by

$$
N_p(t + \Delta t) + N_g(t + \Delta t) = \text{Iround}\left(e^{-\frac{\mu \Delta t}{\varepsilon}}(N_p(t) + N_g(t))\right) + NC(t).
$$

This means that the total number of samples may increase after one time step.

- A method which reduces the number of samples at a cost which is close to linear with respect to the number of samples is a density kernel estimate procedure which employ only a subset of $NC(t)$.
- **•** This density estimate is then used in an acceptance-rejection technique to decide which samples can be eliminated without losing information in the solution.

$$
\hat{g}_p(v,t) = \frac{1}{\tilde{N}_p(t)h^{d_v}} \sum_{k=1}^{\tilde{N}_p(t)} K_h\left(\frac{v - v_k(t)}{h}\right), \; \hat{g}_m(v,t) = \frac{1}{\tilde{N}_m(t)h^{d_v}} \sum_{k=1}^{\tilde{N}_m(t)} K_h\left(\frac{v - v_m(t)}{h}\right),
$$

where $K_h(v)$ is the kernel.

Figure: Left image: shape of the initial distribution $f(v_x, v_y, t = 0)$. Right image: Shape of the equilibrium distribution $M(v_x, v_y)$. Bottom image: Shape of the initial perturbation $g(v_x, v_y, t = 0)$.

Figure: Computation of the integrals $P(g, g)(v_x, v_y)$, $P(M, g)(v_x, v_y)$, $P(g, M)(v_x, v_y)$ by the deviational and the spectral methods.

positive and negative parts of the perturbation: $\tilde{g}p(vx, vy), \tilde{g}m(vx, vy)$

Outline

- [Introduction and Direct Simulation Monte Carlo methods](#page-2-0)
- **[Exponential methods](#page-11-0)**
- [Time diminishing methods](#page-20-0)
- ⁴ [AP and time diminishing methods for the Boltzmann equation](#page-28-0)

[Conclusions](#page-37-0)

Conclusions

- We have presented a series of Monte Carlo strategies to solve kinetic type equations.
- Exponential Runge-Kutta methods represent a very powerful technique which well adapts to particle discretizations and preserve many properties of the original equation.
- Time diminishing methods are based on a suitable merging between Monte Carlo approach and a finite volume methods.
- Their statistical noise is smaller and it diminishes when the scaling parameter ε decreases. They are uniformly stable with respect to the scaling parameter as well as with respect to the space mesh size.
- Their computational cost as well as their variance diminish as the equilibrium is approached. They not need artificial transitions to pass from the microscopic description to the macroscopic one.