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Introduction and Direct Simulation Monte Carlo methods

Monte Carlo integration

Consider the simple integral

I[f ] =

∫
[0,1]d

f(x)dx, d ≥ 1,

if x is a random vector uniformly distributed in [0, 1]d we have I[f ] = E[f(x)], where E[·]
denotes the expectation. If {xn} is a sequence of pseudo-random vectors uniform in [0, 1]d then

IN [f ] =
1

N

N∑
n=1

f(xn), E[IN [f ]] = I[f ].

For the law of large numbers it converges in probability1

lim
N→∞

IN [f ] = I[f ],

and
I[f ]− IN [f ] ≈ σfN−1/2w, E[(I[f ]− IN [f ])2] = σfN

−1/2,

where σ2
f is the variance of f and w is a normal random variable. Note that there is no

dependence on the dimension.
Remark: The convergence rate for a deterministic grid based quadrature is O(N−k/d) for an
order k method. Thus Monte Carlo is ”better” if k/d ≤ 1/2.

1W.Feller ’71, R.E.Caflisch ’98
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Introduction and Direct Simulation Monte Carlo methods

Reconstruction

Given a set of N samples ξ1, ξ2, . . . , ξN the probability density is defined by

f(x) =
1

N

N∑
k=1

δ(x− ξk).

The simplest method, which produces a piecewise constant reconstruction, is based on
evaluating the histogram of the samples at the cell centers of a grid

f(xj+1/2) =
1

N

N∑
k=1

Ψ(ξk − xj+1/2), j = . . . ,−2,−1, 0, 1, 2, . . .

where Ψ(x) = 1/∆x if |x| ≤ ∆x/2 and Ψ(x) = 0 elsewhere.
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Introduction and Direct Simulation Monte Carlo methods

The kinetic model

In the Boltzmann description of RGD, the density f = f(x, v, t) of particles follows the equation

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), x ∈ Ω ⊂ R3, v ∈ R3,

The parameter ε > 0 is called Knudsen number and it is proportional to the mean free path
between collisions. The bilinear collisional operator Q(f, f) is given by

Q(f, f)(v) =

∫
R3

∫
S2
B(|v − v∗|, ω)(f(v′)f(v′∗)− f(v)f(v∗))dv∗dω,

where ω is a vector of the unitary sphere S2 ⊂ R3 and for simplicity the dependence of f on x
and t has been omitted.
The collisional velocities (v′, v′∗) are given by the relations

v′ =
1

2
(v + v∗ + |q|ω), v′∗ =

1

2
(v + v∗ + |q|ω),

where q = v − v∗ is the relative velocity.
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Introduction and Direct Simulation Monte Carlo methods

Collision details

The kernel B characterizes the details of the binary interactions. The classical Variable Hard
Spheres (VHS) model used for RGD simulations is

B(|q|, ω) = K|q|α, 0 ≤ α < 1,

where K is a positive constant. The case α = 0 corresponds to a Maxwellian gas, while α = 1 is
called a Hard Sphere Gas.
The collisional operator is such that the H-Theorem holds∫

R3
Q(f, f) log(f)dv ≤ 0.

This condition implies that each function f in equilibrium (i.e. Q(f, f) = 0) has locally the form
of a Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )3/2
exp

(
−
|u− v|2

2T

)
,

where ρ, u, T are the density, the mean velocity and the gas temperature

ρ =

∫
R3
fdv, ρu =

∫
R3
fvdv, T =

1

3ρ

∫
R3

(v − u)2fdv.
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Introduction and Direct Simulation Monte Carlo methods

Hydrodynamic equations

If we consider the Boltzmann equation and multiply it for the elementary collisional
invariants 1, v, |v|2 and integrate in v we obtain a system of conservation laws
corresponding to conservation of mass, momentum and energy.

Clearly the differential system is not closed since it involves higher order moments of the
function f .

Formally as ε→ 0 the function f is locally replaced by a Maxwellian. In this case it is
possible to compute f from its low order moments thus obtaining to leading order the
closed system of compressible Euler equations

∂ρ

∂t
+

3∑
i=1

∂

∂xi
(ρui) = 0,

∂

∂t
(ρuj) +

3∑
i=1

∂

∂xi
(ρuiuj) +

∂

∂xj
p = 0, j = 1, 2, 3

∂E

∂t
+

3∑
i=1

∂

∂xi
(Eui + pui) = 0,

where p = ρT .

Giacomo Dimarco (Univ. Ferrara) Monte Carlo methods for kinetic equations Catania, February 20-22, 2023 8 / 39



Introduction and Direct Simulation Monte Carlo methods

DSMC basics
Example: Flow past a sphere

– Process any interactions of 

– Select and execute random 

Initialize system with particles (xi, vi), i = 1, . . . , N (sampling).

Loop over time steps of size ∆t.

Create particles at open boundaries.

Move all the particles xi = xi + vi∆t (transport step).

Process any interactions of particle and boundaries (Maxwell’s b.c.).

Sort particles into cells.

Select and execute random collisions (collision step).

Compute average statistical values.
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Introduction and Direct Simulation Monte Carlo methods

DSMC for the collision step

We will describe the classical DSMC methods due to Nanbu in the case of spatially
homogeneous Boltzmann equations2.

We assume that the kinetic equations can be written in the form

∂f

∂t
=

1

ε
[P (f, f)− µf ],

where µ > 0 is a constant and P (f, f) is a non negative bilinear operator s.t.

1

µ

∫
R
P (f, f)(v)φ(v) dv =

∫
R
f(v)φ(v) dv, φ(v) = 1, v, v2.

For the BGK equation P (f, f) = µM(ρ, u, T )(v), for the Boltzmann equation in the
Maxwellian case

P (f, f) = Q+(f, f)(v) =

∫
R3

∫
S2
b0(cos θ)f(v′)f(v′∗) dω dv∗,

and µ = 4πρ.

The case of general VHS kernels is different and it will not discussed.

2G.Bird ’63, K.Nanbu ’83
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Introduction and Direct Simulation Monte Carlo methods

Nanbu’s method (DSMC no time counter)

We assume that f is a probability density, i.e. ρ =
∫+∞
−∞ f(v, t) dv = 1.

Consider a time interval [0, tmax], and discretize it in nTOT intervals of size ∆t.

Let fn(v) be an approximation of f(v, n∆t). The forward Euler scheme writes

fn+1 =

(
1−

µ∆t

ε

)
fn +

µ∆t

ε

P (fn, fn)

µ
.

Clearly if fn is a probability density both P (fn, fn)/µ and fn+1 are probability densities.
Thus the equation has the following probabilistic interpretation.

Physical level: a particle with velocity vi will not collide with probability (1− µ∆t/ε), and
it will collide with probability µ∆t/ε, according to the collision law described by
P (fn, fn)(v).

Monte Carlo level: to sample vi from fn+1 with probability (1− µ∆t/ε) we sample from
fn, and with probability µ∆t/ε we sample from P (fn, fn)(v)/µ.

Note that ∆t ≤ ε/µ to have the probabilistic interpretation. For the BGK model the algorithm is
straightforward since sampling from P (f, f)/µ is simply sampling from a Maxwellian.
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Exponential methods

Decomposition of the collision operator

Let us rewrite the collision step as

∂f

∂t
=

1

ε
[P (f, f)− µf ] ,

where P (f, f) = Q(f, f) + µf and µ > 0 is such that P (f, f) ≥ 0.
By construction we have

1

µ

∫
R3
φ(v)P (f, f) dv =

∫
R3
φ(v)f dv.

Thus P (f, f)/µ is a density function and we take the micro-macro decomposition

P (f, f)/µ = M + g.

Inserting the above decomposition into the collision step leads to

∂tf =
µ

ε
g +

µ

ε
(M − f) =

µ

ε

(
P (f, f)

µ
−M

)
+
µ

ε
(M − f).
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Exponential methods

Exponential Runge-Kutta methods

Let us consider a system of ODEs of the type

y′ = G(y) + λ(E − y), y(t0) = y0,

where G(y) = 0⇔ y = E and E′ = 0.
The general form of an explicit exponential Runge-Kutta method is

Exponential Runge-Kutta

Y (i) = e−ciλ∆tyn + (1− e−ciλ∆t)En + ∆t

i−1∑
j=1

Aij(λ∆t)G(Y (j)), i = 1, . . . , ν

yn+1 = e−λ∆tyn + (1− e−λ∆t)En + ∆t
ν∑
i=1

Wi(λ∆t)G(Y (i)),

where ci ≥ 0, and the coefficients Aij and the weights Wi are such that

Aij(0) = aij , Wi(0) = wi, i, j = 1, . . . , ν

with aij and wi given by a standard explicit Runge-Kutta method called the underlying method.
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Exponential methods

IF-RK methods

The two most popular approaches to get exponential schemes are the integrating factor
(IF) and the exponential time differencing (ETD) methods.

For the so-called Integrating Factor methods we have

Aij(λ∆t) = aije
−(ci−cj)λ∆t, i, j = 1, . . . , ν, j > i

Wi(λ∆t) = wie
−(1−ci)λ∆t, i = 1, . . . , ν.

The underlying Runge-Kutta schemes are characterized by the matrice A = (aij) such that
the resulting scheme is explicit and the coefficient vector w = (w1, .., wν)T . The schemes
described can be represented by the so-called Butcher tableau

c A

ωT

where the coefficients c used for the treatment of non autonomous systems, are given by
the usual relation ci =

∑i
j=1 aij
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Exponential methods

Exponential schemes for the Boltzmann equation

When applied to the Boltzmann equation the first order IF-RK scheme gives

fn+1 = e−µ∆t/εfn +
µ∆t

ε
e−µ∆t/ε P (fn, fn)

µ
+

(
1− e−µ∆t/ε −

µ∆t

ε
e−µ∆t/ε

)
M.

Note that again the scheme is a convex combination of particle densities independently of
∆t/ε and satisfies conservations, nonnegativity and asymptotic preservation.

Higher order schemes can be constructed in the same way. For instance a second order
IF-RK scheme based on midpoint is given by

f∗ = e−
µ∆t
2ε fn +

µ∆t

2ε
e−

µ∆t
2ε

P (fn, fn)

µ
+

(
1− e−

µ∆t
2ε −

µ∆t

2ε
e−

µ∆t
2ε

)
M

fn+1 = e−
µ∆t
ε fn +

µ∆t

ε
e−

µ∆t
2ε

P (f∗, f∗)

µ
+

(
1− e−

µ∆t
ε −

µ∆t

ε
e−

µ∆t
2ε

)
M.

It is easy to verify that even this scheme is convex independently of ∆t/ε. So it satisfies
conservations, nonnegativity and asymptotic preservation.
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Exponential methods

Boltzmann equation: 4th order moment
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Exponential methods

Sod test: heat flux for ε = 5× 10−4
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Exponential methods

Sod test: heat flux for ε = 10−4
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Exponential methods

Sod test: heat flux for ε = 10−4
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Time diminishing methods

Derivation of the micro-macro model

The distribution function f is rewritten accordingly to the following decomposition

f = M + g, with M =
ρ

(2πT )d/2
exp

(
−
|v − u|2

2T

)
.

Now, since M [U ] and f shares the same first three moments, we have

U(t, x) =

∫
Rd
m(v)f(t, x, v)dv =

∫
Rd
m(v)M(t, x, v)dv,

Then the kinetic equation writes

∂tM + ∂tg + v · ∇xM + v · ∇xg = −
ν

ε
g.

Denoting by ΠM the orthogonal projection in N (LQ) = Span
{
M, vM, |v|2M

}
the null

space of the operator Q

ΠM (ϕ) =
1

ρ

[
〈ϕ〉+

(v − u)〈(v − u)ϕ〉
T

+

(
|v − u|2

2T
−

1

2

)〈(
|v − u|2

T
− 1

)
ϕ

〉]
M
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Time diminishing methods

The micro-macro model for the Navier-Stokes equation

The micro-macro model for the unknowns (g, U), equivalent to the kinetic BGK equation,
can be written as follows with T φ = v · ∇xφ

∂tg + (I −ΠM )T g =
ν

ε

[
−g −

ε

ν
(I −ΠM )T M

]
,

∂tU +∇x · F (U) +∇x · 〈vm(v)g〉 = 0,

Let us consider now a second decomposition

f = f0 + εf1 + g, with f0 = M, and f1 = −(I −ΠM )T M.

Injecting the above decomposition into the kinetic equation and applying the projection
operator ΠM gives

∂tM + ΠM (v · ∇xM) + ΠM (v · ∇x(f1 + g)) = 0

This is equivalent to the following equation on the moments U

∂tU +∇x · F (U) + εDU +∇x · 〈vm(v)g〉 = 0,

with DU = ∇x · 〈vm(v)(I −ΠM )T M〉.
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Time diminishing methods

A new Time Diminishing Asymptotic Preserving class of
methods for kinetic equations II

With the previous decomposition the microscopic part reads

∂tg + (I −ΠM )(v · ∇xg) = −
ν

ε
(g + ε(I −ΠM )(∂tf1 + v · ∇xf1)).

The scheme can be summarized by the following steps, at each time step tn

Solve the kinetic equation for the perturbation part using a particle method. This will give
the perturbation values at time (n+ 1).

Solve the macroscopic part with a finite volume method where particles are used to
evaluate the perturbation terms. This gives the moments value Un+1.

Modify the perturbation g at time n+ 1 to ensure the zero-moments property at the
particle level.

Eliminate particles with same speed and different sign in order to reduce the global
computational cost.

Giacomo Dimarco (Univ. Ferrara) Monte Carlo methods for kinetic equations Catania, February 20-22, 2023 24 / 39



Time diminishing methods

Solving the kinetic equation for the perturbation

We consider the solution in a time interval [0,∆t] by an operator splitting between transport

∂tg + T g = 0,

and the source terms respectively for the first and the second decompositions

∂tg = −
νg

ε
+ ΠMT g − (I −ΠM )T M,

∂tg = ΠMT g −
ν

ε
(g + ε(I −ΠM )(∂tf1 + v · ∇xf1)).

The distribution g is approximated by a finite set of N particles

g(t, x, v) =
N∑
k=1

ωkδ(x− xk(t))δ(v − vk(t)),

where xk(t) represents the position, vk(t) the velocity and ωk = ±mp the weight of each
particle.
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Time diminishing methods

Solving the kinetic equation II

The transport step solves the characteristic equations, which corresponds to push the particles:
xn+1
k = xnk + ∆t vnk . The second part reads, for the first decomposition

gn+1 = g∗ −
∆tν

ε
gn+1 + ∆t [ΠMT gn − (I −ΠM )T Mn] ,

which gives

gn+1 =
ε/ν

ε/ν + ∆t
g∗ +

∆t

ε/ν + ∆t
P[gn,Mn].

and for the second decomposition

gn+1 = g∗ −
∆tν

ε
gn+1 + ∆t [ΠMT gn − ε(I −ΠM )(∂tf1 + v · ∇xf1)] ,

which gives

gn+1 =
ε/ν

ε/ν + ∆t
g∗ +

∆t

ε/ν + ∆t
P1[gn, fn1 ].

where g∗ represents the solution after the transport step.
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Time diminishing methods

Monte Carlo vs Time Diminishing scheme : density profile
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Figure: Right Monte Carlo, Left Time Diminishing scheme, ε = 10−2 and ε = 10−3.
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Time diminishing methods

Number of particles employed for the solution
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AP and time diminishing methods for the Boltzmann equation
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AP and time diminishing methods for the Boltzmann equation

A deviational Monte Carlo for the Boltzmann equation

The starting point is again the following decomposition

f(v, t) = M(v) + g(v, t)

with
∫
Rdv φ(v)g(v, t)dv = 0.

We rewrite the space homogeneous Boltzmann using this new variable g(v, t) as

∂
(
geµt/ε

)
∂t

=
1

ε

(
P (M + g,M + g)− µM

)
eµt/ε

=
1

ε

(
P (M,M) + P (g, g) + P (M, g) + P (g,M)− µM

)
eµt/ε

where we used the bilinearity property of the gain operator P .

By noticing that P (M,M) = µM , we finally have

∂
(
geµt/ε

)
∂t

=
1

ε

(
P (g, g) + P (M, g) + P (g,M)

)
eµt/ε.
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AP and time diminishing methods for the Boltzmann equation

A deviational Monte Carlo for the Boltzmann equation II

Now by applying a first order explicit Runge-Kutta method we get

gn+1 = e−
µ∆t
ε gn +

µ∆t

ε
e−

µ∆t
ε

(
P (gn, gn) + P (gn,M) + P (M, gn)

µ

)
.

We divide the perturbation g into a difference of two positive parts:

g(v, t) = gp(v, t)− gm(v, t)

where gp(v, t) := max(g(v, t), 0) and gm(v, t) := −min(g(v, t), 0).

In the above decomposition, both parts are positive, gp(v, t) ≥ 0 and
gm(v, t) ≥ 0, ∀v ∈ Rdv .

Consequently they can then be reinterpreted as probability distributions once suitably
normalized.
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A deviational Monte Carlo for the Boltzmann equation III

Now, we can write

gn+1
p − gn+1

m =e−
µ∆t
ε (gnp − gnm)+

µ∆t

ε
e−

µ∆t
ε

(
P (gnp , g

n
p ) + P (gnp ,M) + P (M, gnp ) + P (gnm, g

n
m)

µ

)
−
µ∆t

ε
e−

µ∆t
ε

(
P (gnp , g

n
m) + P (gnm,M) + P (M, gnm) + P (gnm, g

n
p )

µ

)
.

Then, since P is positive, one deduces the equations for the gn+1
p and gn+1

m

gn+1
p =e−

µ∆t
ε gnp +

µ∆t

ε
e−

µ∆t
ε

(
P (gnp , g

n
p ) + P (gnp ,M) + P (M, gnp ) + P (gnm, g

n
m)

µ

)
,

and

gn+1
m =e−

µ∆t
ε gnm +

µ∆t

ε
e−

µ∆t
ε

(
P (gnp , g

n
m) + P (gnm,M) + P (M, gnm) + P (gnm, g

n
p )

µ

)
.

We now approximate the two distributions gp(v, t) and gm(v, t) by a finite set of Np and Nm
particles

gp(v, t) ≈ m
Np(t)∑
k=1

δvp,k(t)(v),

gm(v, t) ≈ m
Nm(t)∑
k=1

δvm,k(t)(v),
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A deviational Monte Carlo for the Boltzmann equation IV

Compute the initial velocities of the particles belonging to the approximation of gp(v, t = 0)
and gm(v, t = 0): {vp,1(t = 0), .., vp,Np (t = 0)}, {vm,1(t = 0), .., vm,Nm (t = 0)}.

from n = 1 to n = nfin

discard NDp = Iround
(

(1 − e−
µ∆t
ε − µ∆t

ε
e−

µ∆t
ε )Np(t)

)
.

discard NDm = Iround
(

(1 − e−
µ∆t
ε − µ∆t

ε
e−

µ∆t
ε )Nm(t)

)
.

sampling of P (g, g)/µg: keep a fraction

NC1 = Iround
(
µg∆t

ε
e−

µ∆t
ε (Np(t) +Nm(t))

)
.

sampling of P (g,M)/µ: keep a fraction

NC2 = Iround
(
µ∆t
ε
e−

µ∆t
ε (Np(t) +Nm(t))

)
.

sampling of P (M, g)/µ: keep a fraction

NC3 = Iround
(
µ∆t
ε
e−

µ∆t
ε (Np(t) +Ng(t))

)
.

end loop over time

The number of particles increases with time. Remedy have to be studied.
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Discarding particles

In details, the collisional step causes the introduction of the following number of particles

NC(t) = Iround

(
µ∆t

ε
e−

µ∆t
ε (Np(t) +Ng(t))(2 + µg/µ)

)
.

The total number of particles after one time step is consequently given by

Np(t+ ∆t) +Ng(t+ ∆t) = Iround
(
e−

µ∆t
ε (Np(t) +Ng(t))

)
+NC(t).

This means that the total number of samples may increase after one time step.

A method which reduces the number of samples at a cost which is close to linear with
respect to the number of samples is a density kernel estimate procedure which employ only
a subset of NC(t).

This density estimate is then used in an acceptance-rejection technique to decide which
samples can be eliminated without losing information in the solution.

ĝp(v, t) =
1

Ñp(t)hdv

Ñp(t)∑
k=1

Kh

(
v − vk(t)

h

)
, ĝm(v, t) =

1

Ñm(t)hdv

Ñm(t)∑
k=1

Kh

(
v − vm(t)

h

)
,

where Kh(v) is the kernel.
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Figure: Left image: shape of the initial distribution f(vx, vy, t = 0). Right image: Shape
of the equilibrium distribution M(vx, vy). Bottom image: Shape of the initial
perturbation g(vx, vy, t = 0).
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Figure: Computation of the integrals P (g, g)(vx, vy), P (M, g)(vx, vy),P (g,M)(vx, vy)
by the deviational and the spectral methods.
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Conclusions

Conclusions

We have presented a series of Monte Carlo strategies to solve kinetic type
equations.

Exponential Runge-Kutta methods represent a very powerful technique which
well adapts to particle discretizations and preserve many properties of the
original equation.

Time diminishing methods are based on a suitable merging between Monte
Carlo approach and a finite volume methods.

Their statistical noise is smaller and it diminishes when the scaling parameter
ε decreases. They are uniformly stable with respect to the scaling parameter
as well as with respect to the space mesh size.

Their computational cost as well as their variance diminish as the equilibrium
is approached. They not need artificial transitions to pass from the
microscopic description to the macroscopic one.
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