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Introduction and Motivation

Introduction

The trapping of diffusing particles by a static or a moving trap is interesting in

several contexts: — .
Oscillating bubble in water

l .

@ chemistry - i
@ physi ”2‘
physics . N e
i / ~\
@ biology . \. .
In biology, the application is to the study of the k\ / .
dynamics of self-diffusing amphiphiles attracted o\\_,/. "
by a cell boundary. 7

Self-diffusing amphiphiles

Molecules like water on one side and fat on the other.
To better understand the phenomenon, a sort of scaled model has been built up

as a reproducible and tunable biomimetic experimental model system to simulate
. . . 1
LOscillations of Bubble Shape Cause Anomalous Surfactant Diffusion: Experiments, Theory,

and Simulations. A. Raudino, D. Raciti, A. Grassi, M. Pannuzzo, and M. Corti
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Introduction and Motivation
Experimental setup

- Electrode 2

"™ Electrode 3

INSULATING MATERIAL

'WATER LEVEL SURFACTANT INJECTION

\ Electrode 1

Figure 1: Real (left panel) and schematic (right panel) setup of the experimental
apparatus. The central sphere mimics the oscillating bubble.
@ The bubble is formed at the top of a stainless-steel tube protruding out from the
bottom of a small square cell.
@ A stream of charged surfactant diffuses around it, and (reversibly) binds to the
bubble surface.
@ Surfactants (anions) are partially soluble in water because of their polar head, and
they prefer to settle at the bubble surface (hydrophobic repulsion between apolar
tails and bulk water).
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Introduction and Motivation

Measurements

Laboratory experiments provide evidence of a non monotone behavior in time of the
concentration of particles by a detector located behind the bubble, under suitable
experimental condition.

REGIONI REGIONII  REGIONII

The effect of the bubble on the surfactant diffusional
flow has been investigated. Results are summarized in ~ *®
the figure where the conductivity data in the absence
of the bubble (red curve) are compared to those ob-

0,003

tained by introducing a fixed bubble surface saturated

Conductance a.u.

by charged surfactants (blue curve). A different and
unexpected behavior is observed when we introduce  **

an empty bubble oscillating at resonance frequency B 1000 200 %00
t (sec)

(black curve).
A comprehensive explanation of the phenomenon is not yet fully available.

Long term objective of the project is to provide a quantitative explanation of the

phenomenon through numerical modelling.
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Introduction and Motivation

multi-scale challenges

@ Size of the bubble: about 1 mm in diameter

Attractive-repulsive potential of the bubble is of the order of < 1um

@ Bubble oscillations are excited at controlled amplitudes by a periodic electric
field (thanks to the effective net charge at water-air interface) with voltage of
a few tens of a millivolt, inducing oscillations of the order of to a few
hundredth of a nanometer

Typical frequencies: 100-200 Hz

o Diffusion time and duration of the experiment of the order of one hour.

et T G S P e i



Section 2

Multiscale modeling of bubble-surfactants J




(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

Contents

© Multiscale modeling of bubble-surfactants
@ Bubble-surfactant - 1D

@ Bubble-surfactant - 2D and 3D

e T G S P e B0



(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

Deduction of the reduced model in 1D

The numerical simulation of the system presents a multi-scale spatial challenge:
@ the range of the bubble potential is confined within a few microns
@ bubble radius is of the order of a millimeter

For this reason, a reduced model is proposed?.

We start describing the model in 1D first.

The time evolution of a local concentration of ions ¢ = ¢(x, t) diffusing in a
steady fluid is governed by the conservation law

dc 0J dc 1 ,
E J_D<dx kg T V)

where kg is the Boltzmann's constant, T is the absolute temperature and
V = V(X) is a suitable attractive-repulsive potential that models the particle trap.

1C. Astuto, A. Raudino and G. Russo
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(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

The domain of the problem is: Q° = Qf U Qf = [—¢,eL] U [eL, 1] = [—¢, 1] with boundary
conditions J(—¢) = J(1) = 0.

Assume that the trap is located at x = 0 and there is a wall at x = 1.

£=0.05
10 . 10
1
8 1 8
1
6 ' 6
4 ' 4
= ! <
; 2 : S 2
0 - 0
2 ' 2
4 | 4
- e e -
o5 Q5
6 ' 6
0 02 0.4 0.6 0.8 1 1 1.5 2 25 3
Ed ¢

Aim: approximating the behaviour of the trap in Q} with a suitable boundary condition at x = 0,

obtaining then a simplified problem in Q = [0, 1].
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(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

Using a scaling variable £ = 1 4 x/e, the potential can be written in terms of U(&) for
g€0,1+ L] as V(x) = U(E).

We assume that the solution c-(&, t) of the scaled problem

Oce 104 1 /Oce 1 ,)
= =0, Jo=-D- —c U 1
at+56£ B €<8£+kBTCE (1)
has the following expansion in Qjf:
ce(& 1) = O(g, 1) + ecM(g, 1) + O(?). (2

Since the flux J. must be bounded for ¢ — 0, from (1) we have that the coefficient of the term
O(e71) in J: has to vanish:

ac® 1
(&)@ =o. 3
oo 3
This equation can be solved for c(9)(¢, t), yielding
(¢, 1) = O+ L, ) exp (—@) (4)
kg T

since U(1+ L) =0.
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(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

Integrating the conservation law

C 1¢ 1 /6 1
Oc 10k o, 1=-b! (ch t U')
ot e 0¢ e \ 0§ kg T

in Qf we have:
d

el
2 /_ c(x,£) dx + J(eL) — J(—) = 0

and using the approximation c(x, t) ~ c(9)(&, t), the boundary condition J(—&) = 0 and that
V/(eL) = 0 we obtain

dc(eL,t) [+t u(g) dc(eL,t)
ET/O exp( >d§ DT_O

that represents a boundary condition of c(x, t) at x = eL. Using this boundary condition at
x = 0 instead of x = ¢L, we finally obtain:

: : 1+L
Mg —D?—C =0 atx=0, |where M:a/ exp (—U(£)>d§. (5)
ot Ox 0 kBT

We observe that:

@ M — 0 as € — 0 and then the condition (5) reduces to a zero Neumann boundary
condition, therefore the interesting multiscale limit is obtained by letting ¢ — 0, still
maintaining M finite.
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(UVIEEETCR et SRR CE SR Bubble-surfactant - 1D

Extension of the condition to 2D and 3D

The condition seen before can be ex-

tended to 2D. R €(S)
/
¥ _ up?e  pie -
ot 0s2 on
and 3D: T
oc oc
M— = MDA —D—
ot LE on

8|

with M(s) = 5(5)/

0

e (—5 (U(R+E5(5),5))) de

13/48
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(UVEEEICRy el SRR ISR Bubble-surfactant - 2D and 3D

Reduced multiscale model

r
Let B be a circle centered in (0,0) with S
radius equal to r, Q = [—1,1]?\ B be the Q
computational domain. We rewrite the
reduced model: "B
ns
% _pac inQ 7 I's
ot
dc B
— =0 r
8ﬁ5 onlg
dc d?c dc
M— =MD— — D— I
ot 052 “ops P
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Numerical discretization

Numerical discretization

The model problem can be written in compact form
dc

= 6
ot~ 3¢ (6)
where Q is the following (linear) differential operator
DAc in Q
Q=) o 9
c c
D—— — DM ' = r
ot? on on's

Eq. (6) is discretized in time by using the Crank-Nicolson method, which is second

order accurate:

n+1 _ _n
¢ " c (an+an+1)

</ - ’2‘0> e — (/ . go) % (7)

where k is the time step and / is the identity operator.
Numerical modelling of sorption kinetics 15 /48
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Numerical discretization

The operator Q c is discretized on a uniform Cartesian grid by:

@ standard 5-point stencil finite difference for the differential operators on
internal points

@ ghost-point technique for the boundary conditions on ghost points

© Inside grid
® Ghost grid

Numerical modelling of sorption kinetics 16 /48



Numerical discretization Ghost-point technique

Spatial discretization of ghost points

The domain and the circle B are implicitly known by a level set function (signed

distance function) ¢(r,z) = R — /r? + 2.

For each ghost point G, we compute the closest boundary point B by the signed
distance function:
B=G-n-¢(G), A=Veo.

© Inside grid
® Ghost grid

The ghost value is obtained by dis- +2
cretizing Q ¢ as Q &¢(B), where & is a

biquadratic interpolation on the fol-

lowing Upwind 9-point stencil:
(A.C., G. Russo ( J. Comput. Phys. 2013, 2018))

i+2
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Ghost-point technique
Key features of the method

@ Equations for ghost points are coupled each other and cannot be easily
eliminated from the internal equations

@ The entire discretization results in a linear system containing both internal
and ghost values as unknowns:

k k
Ap ¢t = by, where A, = (lh = 2Qh) and by = (lh + 2Qh> Ch-

@ The linear system is not symmetric, nor positive definite (due to the ghost
values)

@ It can be solved by a suitably adjusted multigrid approach 2

2A.C., G. Russo (J. Comput. Phys., 2013)
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Ghost-point technique
Multigrid in brief

A multigrid method is an iterative solver that consists of the following algorithm:

Step 1.

Step 2.
Step 3.

Step 4.
Step 5.
Step 6.
Step 7.

Perform 1 steps of a suitable relaxation scheme to the linear

system Ap, i1 = by, obtaining an approximated solution &

Compute the residual ry = by — A&

Transfer the residual to a coarser grid with spatial step H = 2h by:
rH = I{_’/I‘h

Solve the residual equation: Ayey = ry (recursively!)
Transfer the error ey to the fine grid by: e, = Z}'ey
Update the approximate solution: & « &' + e,

Perform 1, steps of the relaxation scheme to the linear system
Ah C;:-H = bh

— Multigrid works if the relaxation scheme has the smoothing property.
Numerical modelling of sorption kinetics 19/48



Numerical discretization Ghost-point technique

Relaxation scheme

The relaxation scheme is:
ntlk+l _ _ntlk -1 n+1,k
h =Cy + Py " (bn — Anc, ) (8)

where Py, is a suitable preconditioner.

A standard Gauss-Seidel scheme corresponds to Py, = (Dj + Lp), where Dy, and Lj,
are the diagonal and lower part of Ap, respectively.

It does not converge!

Idea: we change the diagonal values of Dy, that corresponds to ghost points,
obtaining a new diagonal matrix Dy, whose values are:
i i 2kD
5[(7,',j) _ Dlgw) =1+ ? if (x,-,yj) € Qy
B if  (xi,yj) € Ghost

where 5 € R is a suitable value to be determine.
Numerical modelling of sorption kinetics 20/48



Numerical discretization Ghost-point technique

The iteration on a ghost point reads:

ij k (i
Cij < Cij + 5_1 (b,"j = (/,5 ’J)Ch — EQ,S 'J)Ch>>

that is

G &= (1 = [~ (/(”J) Q("J )) Gij+ ... terms independent ofc; ;. ..

The value § is chosen in such a way that

<1, with AUDG) _ <Ii5u)7(w) _ QQ}(?:,J),(:») .

VI PO L <
2 2 \2r2 " [M[h))"

This is the convergence criterion. However, it usually degrades the multigrid

’1 o ﬁflAg’J)ﬁ("J)

performance (boundary effects).

et T G S P e
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Ghost-point technique
Optimal multigrid

There are two strategies to overcome boundary effects:

— add a few extra boundary relaxations on the ghost points per internal
relaxation.

o= N = 4, constant
—— N 128, constant
N = 256, constant 3
—e— N = 512, constant 3
64, Bopr, p=0.15
dorr. p =013
A Bopr, p=0.11
— — N =512, fopr, p=0.11

— Determine the optimal relaxation pa-

rameter 0 per each ghost point
(A.C., M. Mazza, M. Semplice; J. Comput. Phys.,

convergence factor p
&

2023): " |
03
BopT = B(9) 0
DD 05 1 1.5 2 25 3
]
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Numerical discretization Ghost-point technique

Restriction operator: ry = I,Zrh

tlnside coarse g
Inside fine grid
Ghost coarse g
Ghost fine grid

rid

rid

¢ 173

ly

N
®
W

N

I

¢

Armando Coco

*

Y

Inside coarse gfrid
Inside fing grid
Ghost codrse grid
Ghost fine grid
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Numerical discretization Ghost-point technique

Interpolation operator: e, = Z/ ey

@ Inside cparse grid
©® Insfide fine grid

% 3/16 | — Ghpst coarse grid
® Ghost fipe grid

|

p/L 116

?
SEC e SuN R

p/1 1/16

©)

o
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Numerical discretization Ghost-point technique

Accuracy tests

Second order accuracy in space and time is tested. We choose an "ad hoc” solution cexa(r, z, t)

and add suitable sources f and g.

relative error

Exact solution: 4 “
[ O L'—norm
. 45 O L —norm
Cexa(r, z, t) = cos(t)?co(r, z)+sin(t)?ci(r, z) . % L™ —norm
best fit slope = —2.08
(r— o 4 (2 — %) . b o
co(r,z) = exp (— 2 d ) T
<o) E5-6.5
rn=0, z =-0.6,00=0.1 £
2 2 <15
q(r,z):exp <_(r rl) +(Z Zl) ) ) *
o1 8.5
n = 0, Z] — —0.7,0’1 =0.1 7925 3 35 4 45 5 55
log 10(N,)
Nr | N €1, p1 €, p2 €00, Poo
20 30 1.389E-02, 1.199E-02, 1.663E-02,
40 60 2.966E-03, 2.227 | 2.560E-03, 2.227 | 3.511E-03 , 2.244
80 120 | 7.276E-04, 2.027 | 6.265E-04, 2.031 | 8.742E-04, 2.006
160 | 240 | 1.796E-04, 2.018 | 1.561E-04, 2.005 | 2.188E-04, 1.998

Armando Coco
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Numerical discretization Ghost-point technique

Multigrid performance

Convergence factor p:

(k+1)
k+1) h
o

NGl

Optimal multigrid is achieved when p(¥*1) ~ 0.1.

°
s

[lr|| (residual error)

S
&

107

16 L L L L s s n
10
0

10 20 30 40 50 60 70 80 90
W-cycle iteration
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Moving bubbles

Contents
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Moving bubbles

Complete system

The main purpose of this work is to study the following system:
carrier concentration satisfies an advection-diffusion equation coupled with the

Stokes equations

¢=V-J inQ
J=DVec—cii inQ
J Ai=0 onlsUT¢

oc d%c Oc
Mzt =MPa= ~ Do,

Armando Coco

on I'B
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Moving bubbles

Complete system

The main purpose of this work is to study the following system:

carrier concentration satisfies an advection-diffusion equation coupled with the

Stokes equations

¢=V-J inQ
J=DVec—cii inQ
J Ai=0 onlsUT¢

oc d%c Oc
Mzt =MPa= ~ Do,

on I'B

a: + Vp:Riev%T in Q

V-u=0 inQ

u=0 onls

u=1ug onlp
our unknowns: concentration ¢ and the speed u.

e T G S P e
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Moving bubbles

Stokes equations

The flow around an oscillating bubble is governed by the Incompressible Navier-Stokes
equations. We assume external forces (gravity) are negligible.

oo _ . I
a+u-Vu+Vp = ReVu
V-d = 0

Numerical modelling of sorption kinetics 29 /48



Moving bubbles

Stokes equations

The flow around an oscillating bubble is governed by the Incompressible Navier-Stokes
equations. We assume external forces (gravity) are negligible.

oo _ . I
a+u-Vu+Vp = ReVu

V.-d = 0
Assumption: small Reynolds number
@ density is p = 1000 kg/m?*
@ viscosity is ;1 =8.90-10*Pa-s
@ amplitude is A=10"%m
@ frequency is v = 10°

@ typical distance is (d) = 107> m

Numerical modelling of sorption kinetics 29 /48



Moving bubbles

Stokes equations

The flow around an oscillating bubble is governed by the Incompressible Navier-Stokes
equations. We assume external forces (gravity) are negligible.

oo _ . I
a+u-Vu+Vp = ReVu
V-d = 0

Assumption: small Reynolds number
o s Typical Reynolds number is
O ety I o = LA g5 5 therefore ((v) = Aw = A2 v):

@ viscosity is ;1 =8.90-10*Pa-s

_ p{v)(d)
@ amplitude is A=10"%m — Re = m
@ frequency is v = 10° _ pA2rv (d) 01
@ typical distance is (d) = 107> m Iz .

et e T G S P P
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Moving bubbles

Stokes equations

The flow around an oscillating bubble is governed by the Incompressible Navier-Stokes
equations. We assume external forces (gravity) are negligible.

oo _ . I
a+u-Vu+Vp = ReVu
V-d = 0

Assumption: small Reynolds number
o s Typical Reynolds number is
O ety I o = LA g5 5 therefore ((v) = Aw = A2 v):

@ viscosity is ;1 =8.90-10*Pa-s

_ p{v)(d)
@ amplitude is A=10"%m — Re = m
@ frequency is v = 10° _ pA2rv (d) 01
@ typical distance is (d) = 107> m Iz .

= convective term are neglected (- Vi = 0)

et e T G S P P
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Discretization in space: MAC grid

u is defined in o
i1 e . . .
Ui j+1/2 . . .
v is defined in ©
. Ui-1/2,j Pij Wit1/2,5
i . . _ _ _
p is defined in °
Vi j-1/2
i1 e . . .
i—1 i i+1

The MAC grid is used to avoid the checkboard instability for the pressure term
observed in non-staggered grids due to the fact that p appears in the equations
only in the form of Vp.

Numerical modelling of sorption kinetics 30/48



Moving bubbles

Discretization in time

—

i . ou 1 _,.
Finally, the equation reads: — + Vp = —V“i.
ot Re

Numerical modelling of sorption kinetics 31/48



Moving bubbles

Discretization in time

—

ou 1
Finally, the equation reads: — + Vp = — V2. A popular approach for time discretization is

ot Re
the Projection method:
ot —a" _ LV2L_I’*
At Re
Jn+1 = [7F — vXn+1 (9)

Taking divergence of both sides of (9): V2x"t! =V . i*
Boundary conditions: Projecting (9) to the boundary:

— e — —

yeA=a"-7— Vx4 b T=0 T VY7

3
L
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Moving bubbles

Discretization in time

—

ou 1
Finally, the equation reads: a5t +Vp = R—V2ﬁ. A popular approach for time discretization is
e

o — " 1
£ 77 7V2—’*
At Re "
Jn+1 = [7F — vXn+1 (9)

Taking divergence of both sides of (9): V2x"t! =V . i*

the Projection method:

Boundary conditions: Projecting (9) to the boundary:
= o — - -k o

yeA=a"-7— Vx4 b T=0 T VY7

One possible choice of boundary conditions for ™1 and &* is:

axn+l

FT = 0 Pros: three elliptic equations to solve at each
TR = by time step

L R Cons: divergence is only first order accurate
T = Oy TH+ o7 (i.e. V-0 =0O(h))

>2n+1 — 2Xn Xn—l

Numerical modelling of sorption kinetics 31/48



Moving bubbles

Discretization in time

An alternative approach is represented by:

Crank-Nicolson (monolithic method)

gt — " n+1/2 1 2 on+1 2 on
—x;  tVp = ﬂ(VU +vu)
v.itt = 0
it o= b on 9B(0)

Numerical modelling of sorption kinetics 32/48



Moving bubbles

Discretization in time

An alternative approach is represented by:

Crank-Nicolson (monolithic method)

gt — " n+1/2 1 2 on+1 2 on
—x;  tVp = ﬁ(VU +vu)
v.itt = 0
it o= b on 9B(0)

Pros: second order accuracy in & and V - i

Cons 1: pressure in not uniquely defined (the discretized linear system is singular)

Cons 2: leading to a much larger linear system, (whose unknowns are
n+1 n+1 _n+1/2
(u, v, pm2))

Numerical modelling of sorption kinetics 32/48



Moving bubbles

Cons 1: pressure in not uniquely defined = stabilization technique

The problem is augmented by introducing an additional unknown £"1 € R and

an equation for p"+1/2;

LT"+1 Y
At 4 vpn+1/2
vV - Jn+1
LTIhLl

Z P{1'+1/2
ij

ﬁ (V2amtt + v2im)
£n+1

Up on 95(0)
0

Remark: Observe that no b.c. for p™1/2 are required.

Armando Coco
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Moving bubbles

Cons 1: pressure in not uniquely defined = stabilization technique

The problem is augmented by introducing an additional unknown £"*1 € R and

an equation for p"+1/2;

LT"+1 Y
At 4 vpn+1/2
vV - Jn+1
LTI7+1

Z p{1.+1/2
ij

ﬁ (V2amtt + v2im)
£n+1

Up on 95(0)
0

Remark: Observe that no b.c. for p™1/2 are required.

Cons 2: large linear system =—> multigrid

Armando Coco

Numerical modelling of sorption kinetics
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Moving bubbles

Crank-Nicolson (monolithic method)

Cons 1: pressure in not uniquely defined = stabilization technique
The problem is augmented by introducing an additional unknown £"*1 € R and

an equation for p"t1/2:
7+l 7
u ~ e n vpn+1/2 _ 21Re (V2Jn+1 + v2g‘n)
-n+l n+1
V-u = £
L7n+1 = ljb on I'B

Z PZH/z — 0

Cons 2: the additional equation is balanced with the additional unknown ¢ that
decays to zero with the order of the method
Remark: Observe that no b.c. for p™*1/2 are required.

Numerical modelling of sorption kinetics 34 /48



Test 1: pulsating bubble

In this test we model the expansion/compression of a (pulsating) bubble,
represented by a sphere B(t) centred at the origin and with radius:

R(t) = Ra(1 + Asin(wt))

where Rg = R(0), A the amplitude, w = 27 and v the frequency. The velocity of
the bubble surface is

uy(&,z) = R'(t)n=ARgwcos(wt)n

where n = (£,2)//€2 + 22 and \/€2 4 22 = R(t).

The exact solution for the 3D axisymmetric Stokes problem with free-slip

boundary conditions on the bubble surface in a semi-infinite domain
Q(t) = {(£,2): 0 <& < +oo, E+2°> (R(1))}is:

o = RO (€.2), 5= ROR'(ORE + AR () VET 2

Numerical modelling of sorption kinetics 35/48



Moving bubbles

Accuracy test

Remark

In a finite domain we cannot prescribe the wall boundary conditions u = 0 on the
external boundary otherwise the mass conservation is not guaranteed —> we
prescribe the exact velocity at s

We choose Rz = 0.253, A=0.04, w =27 v, v =50 and tg, = 0.1.

3r
L' u error
£ u error

s best fit slope = —1.862
best fit slope = —1.940
L' v error

5l £ v error
best fit slope = —1.842
best fit slope = —2.035

Numerical modelling of sorption kinetics 36 /48



Moving bubbles

Steady vs moving computational bubble

When the amplitude of the bubble oscillation is sufficiently small compared to the
spatial step, R(t) & Rg, it is reasonable to simplify the model by assuming that
the velocity of the surface bubble is assigned:

up(&,z) = Awcos(w t)(&, z) for /€2 + 22 =

In this way, the computational domain does not move on time and the exact
solution is:

(Rs)?
@27

(6,2), p=R'(RE/VE+ 2.

uge = R'(1)

Numerical modelling of sorption kinetics 37/48



Moving bubbles

Numerical results

The difference between the exact solutions is

Uexa — uixa = O(A)

—> the difference between the two approaches decays

L> — norm relative error

as A— 0.

L> — norm relative error

25 % 10? -
() umoving
& v moving ®
3 O u fized
% % v fived
10'F 1
T35 N
£ ® s
EL 4 g
10°F q
%
4.5 u error ® ® ®
* verror ® & & & o 6 o
* slope = 1
5 10 . . . .
-4 35 3 25 -2 15 -1 10% 10 107 102 107 10°
log 10(A) log 10(A)
Figure 2: Left panel: relative error between the two numerical solutions uy, ul,. Right
: f f
panel: relative error between up, Uey, and uy, ug,,.
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Moving bubbles

Harmonic vertical oscillation of the spherical bubble: v = 20

https://www.youtube.com/watch?v=YueQeDZqC90
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 https://www.youtube.com/watch?v=YueQeDZqC9o

Moving bubbles

Harmonic vertical oscillation of the spherical bubble: v = 2422

https://www.youtube.com/watch?v=-SeBaXRZtXY
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Ellipsoidal deformation of the bubble: » = 20

https://www.youtube.com/watch?v=PnF6CdtZ89U
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https://www.youtube.com/watch?v=PnF6CdtZ89U

Ellipsoidal deformation of the bubble: v = 2422

https://www.youtube.com/watch?v=1Q0xep9H7Zs
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https://www.youtube.com/watch?v=lQOxep9H7Zs

Moving bubbles

0.019

0.018

detector values

0.017

0.016

0.015

0.014

0.013
0

time

detector values

0.004 0.006
time

Figure 3: Detector values of the particle concentration ¢ at (§q = 0.4,zy = 0). The
spatial step is h =1/120. On the left we plot the comparison between TEST2A10 (blue
line), TEST2B10 (red line) and steady-bubble case with u = 0 (black line). Analogously,
on the right, we show the comparison between TEST2A1000 and TEST2B1000. The

dashed lines represent the mean values of the respective tests.
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