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Introduction and Motivation

Introduction

The trapping of diffusing particles by a static or a moving trap is interesting in

several contexts:

chemistry

physics

biology

In biology, the application is to the study of the

dynamics of self-diffusing amphiphiles attracted

by a cell boundary.

Molecules like water on one side and fat on the other.

To better understand the phenomenon, a sort of scaled model has been built up

as a reproducible and tunable biomimetic experimental model system to simulate

a similar effect in laboratory 1.
1Oscillations of Bubble Shape Cause Anomalous Surfactant Diffusion: Experiments, Theory,

and Simulations. A. Raudino, D. Raciti, A. Grassi, M. Pannuzzo, and M. Corti
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Introduction and Motivation

Experimental setup

Figure 1: Real (left panel) and schematic (right panel) setup of the experimental

apparatus. The central sphere mimics the oscillating bubble.

The bubble is formed at the top of a stainless-steel tube protruding out from the

bottom of a small square cell.

A stream of charged surfactant diffuses around it, and (reversibly) binds to the

bubble surface.

Surfactants (anions) are partially soluble in water because of their polar head, and

they prefer to settle at the bubble surface (hydrophobic repulsion between apolar

tails and bulk water).
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Introduction and Motivation

Measurements

Laboratory experiments provide evidence of a non monotone behavior in time of the

concentration of particles by a detector located behind the bubble, under suitable

experimental condition.

The effect of the bubble on the surfactant diffusional

flow has been investigated. Results are summarized in

the figure where the conductivity data in the absence

of the bubble (red curve) are compared to those ob-

tained by introducing a fixed bubble surface saturated

by charged surfactants (blue curve). A different and

unexpected behavior is observed when we introduce

an empty bubble oscillating at resonance frequency

(black curve).

A comprehensive explanation of the phenomenon is not yet fully available.

Long term objective of the project is to provide a quantitative explanation of the

phenomenon through numerical modelling.
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Introduction and Motivation

multi-scale challenges

Size of the bubble: about 1 mm in diameter

Attractive-repulsive potential of the bubble is of the order of ≤ 1µm

Bubble oscillations are excited at controlled amplitudes by a periodic electric

field (thanks to the effective net charge at water-air interface) with voltage of

a few tens of a millivolt, inducing oscillations of the order of to a few

hundredth of a nanometer

Typical frequencies: 100-200 Hz

Diffusion time and duration of the experiment of the order of one hour.
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 1D

Deduction of the reduced model in 1D

The numerical simulation of the system presents a multi-scale spatial challenge:

the range of the bubble potential is confined within a few microns

bubble radius is of the order of a millimeter

For this reason, a reduced model is proposed1.

We start describing the model in 1D first.

The time evolution of a local concentration of ions c = c(~x , t) diffusing in a

steady fluid is governed by the conservation law

∂c

∂t
+
∂J

∂x
= 0, J = −D

(
∂c

∂x
+

1

kBT
c V ′

)
.

where kB is the Boltzmann’s constant, T is the absolute temperature and

V = V (~x) is a suitable attractive-repulsive potential that models the particle trap.

1C. Astuto, A. Raudino and G. Russo
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 1D

The domain of the problem is: Ωε = Ωε
b ∪ Ωε

f = [−ε, εL] ∪ [εL, 1] = [−ε, 1] with boundary

conditions J(−ε) = J(1) = 0.

Assume that the trap is located at x = 0 and there is a wall at x = 1.

Aim: approximating the behaviour of the trap in Ωε
b with a suitable boundary condition at x = 0,

obtaining then a simplified problem in Ω = [0, 1].
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 1D

Using a scaling variable ξ = 1 + x/ε, the potential can be written in terms of U(ξ) for

ξ ∈ [0, 1 + L] as V (x) = U(ξ).

We assume that the solution cε(ξ, t) of the scaled problem

∂cε

∂t
+

1

ε

∂Jε

∂ξ
= 0, Jε = −D

1

ε

(
∂cε

∂ξ
+

1

kB T
cε U′

)
(1)

has the following expansion in Ωε
b :

cε(ξ, t) = c(0)(ξ, t) + εc(1)(ξ, t) + O(ε2). (2)

Since the flux Jε must be bounded for ε→ 0, from (1) we have that the coefficient of the term

O(ε−1) in Jε has to vanish:

∂c(0)

∂ξ
+

1

kB T
U′(ξ)c(0) = 0. (3)

This equation can be solved for c(0)(ξ, t), yielding

c(0)(ξ, t) = c(0)(1 + L, t) exp

(
−

U(ξ)

kB T

)
(4)

since U(1 + L) = 0.
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 1D

Integrating the conservation law

∂cε

∂t
+

1

ε

∂Jε

∂ξ
= 0, Jε = −D

1

ε

(
∂cε

∂ξ
+

1

kB T
cε U′

)
in Ωε

b we have:

d

dt

∫ εL

−ε
c(x , t) dx + J(εL)− J(−ε) = 0

and using the approximation c(x , t) ≈ c(0)(ξ, t), the boundary condition J(−ε) = 0 and that

V ′(εL) = 0 we obtain

ε
∂c(εL, t)

∂t

∫ 1+L

0
exp

(
−

U(ξ)

kB T

)
dξ − D

∂c(εL, t)

∂x
= 0

that represents a boundary condition of c(x , t) at x = εL. Using this boundary condition at

x = 0 instead of x = εL, we finally obtain:

M
∂c

∂t
− D

∂c

∂x
= 0 at x = 0, where M = ε

∫ 1+L

0
exp

(
−

U(ξ)

kB T

)
dξ. (5)

We observe that:

M → 0 as ε→ 0 and then the condition (5) reduces to a zero Neumann boundary

condition, therefore the interesting multiscale limit is obtained by letting ε→ 0, still

maintaining M finite.
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 1D

Extension of the condition to 2D and 3D

The condition seen before can be ex-

tended to 2D.

M
∂c

∂t
= MD

∂2c

∂s2
− D

∂c

∂n

and 3D:

M
∂c

∂t
= MD∆⊥c − D

∂c

∂n

    R

n

(S)

with M(s) = ε(s)

∫ 1

0

exp
(
− χ
D

(U (R + ξε(s), s))
)
dξ
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Multiscale modeling of bubble-surfactants Bubble-surfactant - 2D and 3D

Reduced multiscale model

Let B be a circle centered in (0, 0) with

radius equal to r , Ω = [−1, 1]2 \B be the

computational domain. We rewrite the

reduced model:

∂c

∂t
= D∆c in Ω

∂c

∂n̂S
= 0 on ΓS

M
∂c

∂t
= MD

∂2c

∂s2
− D

∂c

∂n̂S
on ΓB

Ω
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Numerical discretization

Numerical discretization

The model problem can be written in compact form

∂c

∂t
= Q c (6)

where Q is the following (linear) differential operator

Q c =


D∆c in Ω

D
∂2c

∂τ 2
− DM−1 ∂c

∂n
on ΓB

Eq. (6) is discretized in time by using the Crank-Nicolson method, which is second

order accurate:

cn+1 − cn

k
=

1

2

(
Q cn + Q cn+1

)
(
I − k

2
Q

)
cn+1 =

(
I +

k

2
Q

)
cn (7)

where k is the time step and I is the identity operator.
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Numerical discretization

The operator Q c is discretized on a uniform Cartesian grid by:

standard 5-point stencil finite difference for the differential operators on

internal points

ghost-point technique for the boundary conditions on ghost points

Ω

i-1 i i+1 

j+1

j

j-1

Pij

Ω

G

Inside grid
Ghost grid 
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Numerical discretization Ghost-point technique

Spatial discretization of ghost points

The domain and the circle B are implicitly known by a level set function (signed

distance function) φ(r , z) = R −
√
r2 + z2.

For each ghost point G , we compute the closest boundary point B by the signed

distance function:

B = G − ~n · φ(G ), ~n = ∇φ.

The ghost value is obtained by dis-

cretizing Q c as Q c̃(B), where c̃ is a

biquadratic interpolation on the fol-

lowing Upwind 9-point stencil:

(A.C., G. Russo ( J. Comput. Phys. 2013, 2018))

Ω

B

G

j

j+1

j+2

i i+1 i+2

x

yh

Inside grid
Ghost grid

h

Armando Coco Numerical modelling of sorption kinetics 17 / 48



Numerical discretization Ghost-point technique

Key features of the method

Equations for ghost points are coupled each other and cannot be easily

eliminated from the internal equations

The entire discretization results in a linear system containing both internal

and ghost values as unknowns:

Ah c
n+1
h = bh, where Ah =

(
Ih −

k

2
Qh

)
and bh =

(
Ih +

k

2
Qh

)
cn

h .

The linear system is not symmetric, nor positive definite (due to the ghost

values)

It can be solved by a suitably adjusted multigrid approach 2

2A.C., G. Russo (J. Comput. Phys., 2013)
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Numerical discretization Ghost-point technique

Multigrid in brief

A multigrid method is an iterative solver that consists of the following algorithm:

Step 1. Perform ν1 steps of a suitable relaxation scheme to the linear

system Ah c
n+1
h = bh, obtaining an approximated solution c̃n+1

h

Step 2. Compute the residual rh = bh − Ahc̃
n+1
h

Step 3. Transfer the residual to a coarser grid with spatial step H = 2h by:

rH = Ih
H rh

Step 4. Solve the residual equation: AHeH = rH (recursively!)

Step 5. Transfer the error eH to the fine grid by: eh = IH
h eH

Step 6. Update the approximate solution: c̃n+1
h ← c̃n+1

h + eh

Step 7. Perform ν2 steps of the relaxation scheme to the linear system

Ah c
n+1
h = bh

→ Multigrid works if the relaxation scheme has the smoothing property.
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Numerical discretization Ghost-point technique

Relaxation scheme

The relaxation scheme is:

cn+1,k+1
h = cn+1,k

h + P−1
h (bh − Ahc

n+1,k
h ) (8)

where Ph is a suitable preconditioner.

A standard Gauss-Seidel scheme corresponds to Ph = (Dh + Lh), where Dh and Lh

are the diagonal and lower part of Ah, respectively.

It does not converge!

Idea: we change the diagonal values of Dh that corresponds to ghost points,

obtaining a new diagonal matrix D̃h whose values are:

D̃
(i,j)
h =

D
(i,j)
h = 1 +

2kD

h2
if (xi , yj ) ∈ Ωh

β if (xi , yj ) ∈ Ghost

where β ∈ R is a suitable value to be determine.
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Numerical discretization Ghost-point technique

The iteration on a ghost point reads:

ci,j ← ci,j + β−1

(
bi,j −

(
I

(i,j)
h ch −

k

2
Q

(i,j)
h ch

))
that is

ci,j ←
(

1− β−1

(
I

(i,j),(i,j)
h − k

2
Q

(i,j),(i,j)
h

))
ci,j + . . . terms independent ofci,j . . .

The value β is chosen in such a way that∣∣∣1− β−1A
(i,j),(i,j)
h

∣∣∣ ≤ 1, with A
(i,j),(i,j)
h =

(
I

(i,j),(i,j)
h − k

2
Q

(i,j),(i,j)
h

)
.

=⇒ . . . =⇒ |β| ≥ 1

2

(
1 +

Dk

2

(
13

2h2
+

3

|M| h

))
.

This is the convergence criterion. However, it usually degrades the multigrid

performance (boundary effects).
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Numerical discretization Ghost-point technique

Optimal multigrid

There are two strategies to overcome boundary effects:

→ add a few extra boundary relaxations on the ghost points per internal

relaxation.

→ Determine the optimal relaxation pa-

rameter β per each ghost point

(A.C., M. Mazza, M. Semplice; J. Comput. Phys.,

2023):

βOPT = β(φ)
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Numerical discretization Ghost-point technique

Restriction operator: rH = Ih
Hrh

 

In s ide  coa rs e  g rid
In s ide  fin e  g rid
Gh os t  coa rs e  g rid
Gh os t  fin e  g rid

Ω

1/3 1/3

1/3
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Numerical discretization Ghost-point technique

Interpolation operator: eh = IH
h eH

In s ide  coa rs e  g rid
In s ide  fin e  g rid
Gh os t  coa rs e  g rid
Gh os t  fin e  g rid

Ω 1/16

3/169/16

3/16

1/16

3/169/16

3/16
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Numerical discretization Ghost-point technique

Accuracy tests

Second order accuracy in space and time is tested. We choose an ”ad hoc” solution cexa(r , z, t)

and add suitable sources f and g .

Exact solution:

cexa(r , z, t) = cos(t)2c0(r , z)+sin(t)2c1(r , z)

c0(r , z) = exp

(
−

(r − r0)2 + (z − z0)2

σ0

)
,

r0 = 0, z0 = −0.6, σ0 = 0.1

c1(r , z) = exp

(
−

(r − r1)2 + (z − z1)2

σ1

)
,

r1 = 0, z1 = −0.7, σ1 = 0.1

Nr Nz e1, p1 e2, p2 e∞, p∞

20 30 1.389E-02, 1.199E-02, 1.663E-02,

40 60 2.966E-03, 2.227 2.560E-03, 2.227 3.511E-03 , 2.244

80 120 7.276E-04, 2.027 6.265E-04, 2.031 8.742E-04, 2.006

160 240 1.796E-04, 2.018 1.561E-04, 2.005 2.188E-04, 1.998
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Numerical discretization Ghost-point technique

Multigrid performance

Convergence factor ρ:

ρ(k+1) =

∥∥∥r (k+1)
h

∥∥∥∥∥∥r (k)
h

∥∥∥
Optimal multigrid is achieved when ρ(k+1) ≈ 0.1.
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Moving bubbles

Complete system

The main purpose of this work is to study the following system:

carrier concentration satisfies an advection-diffusion equation coupled with the

Stokes equations

ct = ∇ · ~J in Ω

~J = D∇c−c~u in Ω

~J · n̂1 = 0 on ΓS ∪ ΓC

M
∂c

∂t
= MD

∂2c

∂~τ 2
− D

∂c

∂n̂2
on ΓB

~ut +∇p=
1

Re
∇2~u in Ω

∇ · ~u= 0 in Ω

~u= 0 on ΓS

~u= ~uB on ΓB

Ω

our unknowns: concentration c and the speed ~u.
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Moving bubbles

Stokes equations

The flow around an oscillating bubble is governed by the Incompressible Navier-Stokes

equations. We assume external forces (gravity) are negligible.

∂~u

∂t
+ ~u · ∇~u +∇p =

1

Re
∇2~u

∇ · ~u = 0

Assumption: small Reynolds number

density is ρ = 1000 kg/m3

viscosity is µ = 8.90 · 10−4 Pa · s

amplitude is A = 10−8 m

frequency is ν = 103

typical distance is 〈d〉 = 10−3 m

=⇒

Typical Reynolds number is

therefore (〈v〉 = Aω = A 2π ν):

Re =
ρ 〈v〉 〈d〉

µ

=
ρA 2π ν 〈d〉

µ
< 0.1

=⇒ convective term are neglected (~u · ∇~u = 0)
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Moving bubbles

Discretization in space: MAC grid

u is defined in ◦

v is defined in �

p is defined in ·

The MAC grid is used to avoid the checkboard instability for the pressure term

observed in non-staggered grids due to the fact that p appears in the equations

only in the form of ∇p.
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Moving bubbles

Discretization in time

Finally, the equation reads:
∂~u

∂t
+∇p =

1

Re
∇2~u.

A popular approach for time discretization is

the Projection method:
~u∗ − ~un

∆t
=

1

Re
∇2~u∗

~un+1 = ~u∗ −∇χn+1 (9)

Taking divergence of both sides of (9): ∇2χn+1 = ∇ · ~u∗

Boundary conditions: Projecting (9) to the boundary:

~ub · ~n = ~u∗ · ~n −∇χn+1 · ~n ~ub · ~τ = ~u∗ · ~τ −∇χn+1 · ~τ

One possible choice of boundary conditions for χn+1 and ~u∗ is:

∂χn+1

∂~n
= 0

~u∗ · ~n = ~ub · ~n

~u∗ · ~τ = ~ub · ~τ +
∂χ̃n+1

∂~τ

χ̃n+1 = 2χn − χn−1

Pros: three elliptic equations to solve at each

time step

Cons: divergence is only first order accurate

(i.e. ∇ · ~u = O(h))

Armando Coco Numerical modelling of sorption kinetics 31 / 48



Moving bubbles

Discretization in time

Finally, the equation reads:
∂~u

∂t
+∇p =

1

Re
∇2~u. A popular approach for time discretization is

the Projection method:
~u∗ − ~un

∆t
=

1

Re
∇2~u∗

~un+1 = ~u∗ −∇χn+1 (9)

Taking divergence of both sides of (9): ∇2χn+1 = ∇ · ~u∗

Boundary conditions: Projecting (9) to the boundary:

~ub · ~n = ~u∗ · ~n −∇χn+1 · ~n ~ub · ~τ = ~u∗ · ~τ −∇χn+1 · ~τ

One possible choice of boundary conditions for χn+1 and ~u∗ is:

∂χn+1

∂~n
= 0

~u∗ · ~n = ~ub · ~n

~u∗ · ~τ = ~ub · ~τ +
∂χ̃n+1

∂~τ

χ̃n+1 = 2χn − χn−1

Pros: three elliptic equations to solve at each

time step

Cons: divergence is only first order accurate

(i.e. ∇ · ~u = O(h))

Armando Coco Numerical modelling of sorption kinetics 31 / 48



Moving bubbles

Discretization in time

Finally, the equation reads:
∂~u

∂t
+∇p =

1

Re
∇2~u. A popular approach for time discretization is

the Projection method:
~u∗ − ~un

∆t
=

1

Re
∇2~u∗

~un+1 = ~u∗ −∇χn+1 (9)

Taking divergence of both sides of (9): ∇2χn+1 = ∇ · ~u∗

Boundary conditions: Projecting (9) to the boundary:

~ub · ~n = ~u∗ · ~n −∇χn+1 · ~n ~ub · ~τ = ~u∗ · ~τ −∇χn+1 · ~τ

One possible choice of boundary conditions for χn+1 and ~u∗ is:

∂χn+1

∂~n
= 0

~u∗ · ~n = ~ub · ~n

~u∗ · ~τ = ~ub · ~τ +
∂χ̃n+1

∂~τ

χ̃n+1 = 2χn − χn−1

Pros: three elliptic equations to solve at each

time step

Cons: divergence is only first order accurate

(i.e. ∇ · ~u = O(h))
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Moving bubbles

Discretization in time

An alternative approach is represented by:

Crank-Nicolson (monolithic method)

~un+1 − ~un

∆t
+∇pn+1/2 =

1

2Re

(
∇2~un+1 +∇2~un

)
∇ · ~un+1 = 0

~un+1 = ~ub on ∂B(0)

Pros: second order accuracy in ~u and ∇ · ~u

Cons 1: pressure in not uniquely defined (the discretized linear system is singular)

Cons 2: leading to a much larger linear system, (whose unknowns are

(un+1, vn+1, pn+1/2))
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Moving bubbles

Cons 1: pressure in not uniquely defined =⇒ stabilization technique

The problem is augmented by introducing an additional unknown ξn+1 ∈ R and

an equation for pn+1/2:

~un+1 − ~un

∆t
+∇pn+1/2 =

1

2Re

(
∇2~un+1 +∇2~un

)
∇ · ~un+1 = ξn+1

~un+1 = ~ub on ∂B(0)∑
p

n+1/2
ij = 0

Remark: Observe that no b.c. for pn+1/2 are required.

Cons 2: large linear system =⇒ multigrid
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Moving bubbles

Crank-Nicolson (monolithic method)

Cons 1: pressure in not uniquely defined =⇒ stabilization technique

The problem is augmented by introducing an additional unknown ξn+1 ∈ R and

an equation for pn+1/2:

~un+1 − ~un

∆t
+∇pn+1/2 =

1

2Re

(
∇2~un+1 +∇2~un

)
∇ · ~un+1 = ξn+1

~un+1 = ~ub on ΓB∑
p

n+1/2
ij = 0

Cons 2: the additional equation is balanced with the additional unknown ξ that

decays to zero with the order of the method

Remark: Observe that no b.c. for pn+1/2 are required.
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Moving bubbles

Test 1: pulsating bubble

In this test we model the expansion/compression of a (pulsating) bubble,

represented by a sphere B(t) centred at the origin and with radius:

R(t) = RB(1 + A sin(ωt))

where RB = R(0), A the amplitude, ω = 2πν and ν the frequency. The velocity of

the bubble surface is

ub(ξ, z) = R ′(t) n = ARB ω cos(ω t) n

where n = (ξ, z)/
√
ξ2 + z2 and

√
ξ2 + z2 = R(t).

The exact solution for the 3D axisymmetric Stokes problem with free-slip

boundary conditions on the bubble surface in a semi-infinite domain

Ω(t) = {(ξ, z) : 0 < ξ < +∞, ξ2 + z2 > (R(t))2
}

is:

uexa = R ′(t)
(R(t))2

(ξ2 + z2)3/2
· (ξ, z), p = R(t)(R ′′(t)R(t) + 2(R ′(t))2)/

√
ξ2 + z2.
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Moving bubbles

Accuracy test

Remark

In a finite domain we cannot prescribe the wall boundary conditions u = 0 on the

external boundary otherwise the mass conservation is not guaranteed =⇒ we

prescribe the exact velocity at ΓS

We choose RB = 0.253, A = 0.04, ω = 2π ν, ν = 50 and tfin = 0.1.
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Moving bubbles

Steady vs moving computational bubble

When the amplitude of the bubble oscillation is sufficiently small compared to the

spatial step, R(t) ≈ RB, it is reasonable to simplify the model by assuming that

the velocity of the surface bubble is assigned:

ub(ξ, z) = Aω cos(ω t)(ξ, z) for
√
ξ2 + z2 = RB.

In this way, the computational domain does not move on time and the exact

solution is:

uf
exa = R ′(t)

(RB)2

(ξ2 + z2)3/2
· (ξ, z), p = R ′′(t)R2

B/
√
ξ2 + z2.
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Moving bubbles

Numerical results

The difference between the exact solutions is

uexa − uf
exa = O(A)

=⇒ the difference between the two approaches decays as A→ 0.

A A

Figure 2: Left panel: relative error between the two numerical solutions uh, u
f
h. Right

panel: relative error between uh, uexa and uf
h, u

f
exa.
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Moving bubbles

Harmonic vertical oscillation of the spherical bubble: ν = 10
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Moving bubbles

Harmonic vertical oscillation of the spherical bubble: ν = 20

https://www.youtube.com/watch?v=YueQeDZqC9o
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Moving bubbles

Harmonic vertical oscillation of the spherical bubble: ν = 2422

https://www.youtube.com/watch?v=-SeBaXRZtXY
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Moving bubbles

Ellipsoidal deformation of the bubble: ν = 10
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Moving bubbles

Ellipsoidal deformation of the bubble: ν = 20

https://www.youtube.com/watch?v=PnF6CdtZ89U
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Moving bubbles

Ellipsoidal deformation of the bubble: ν = 2422

https://www.youtube.com/watch?v=lQOxep9H7Zs
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Moving bubbles

Figure 3: Detector values of the particle concentration c at (ξd = 0.4, zd = 0). The

spatial step is h = 1/120. On the left we plot the comparison between Test2a10 (blue

line), Test2b10 (red line) and steady-bubble case with u = 0 (black line). Analogously,

on the right, we show the comparison between Test2a1000 and Test2b1000. The

dashed lines represent the mean values of the respective tests.
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Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations
√

Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations
√

Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations
√

Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations

√
Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations
√

Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

Summary and future projects

√
Spatial multiscale challenge is solved

√
Second order method in space and time for Stokes equations

√
Comparison between moving and static domain for small

oscillations
√

Coupling the Stokes equation with the advection-diffusion

equation

? Spatial multiscale challenge is solved

Armando Coco Numerical modelling of sorption kinetics 47 / 48



Conclusion

References... and thank you for the attention

Clarissa Astuto, Armando Coco, and Giovanni Russo, A finite-difference ghost-point

multigrid method for multi-scale modelling of sorption kinetics of a surfactant past an

oscillating bubble, Journal of Computational Physics (2023), 111880.

Clarissa Astuto, Antonio Raudino, and Giovanni Russo, Multiscale modeling of sorption

kinetics, arXiv preprint arXiv:2202.02552 (2022).

Armando Coco, Mariarosa Mazza, and Matteo Semplice, A ghost-point smoothing

strategy for geometric multigrid on curved boundaries, Journal of Computational

Physics (2023), 111982.

Armando Coco, A multigrid ghost-point level-set method for incompressible

navier-stokes equations on moving domains with curved boundaries, Journal of

Computational Physics 418 (2020), 109623.

Armando Coco and Giovanni Russo, Finite-difference ghost-point multigrid methods on

cartesian grids for elliptic problems in arbitrary domains, Journal of Computational

Physics 241 (2013), 464–501.

Armando Coco and Giovanni Russo, Second order finite-difference ghost-point

multigrid methods for elliptic problems with discontinuous coefficients on an arbitrary

interface, Journal of Computational Physics 361 (2018), 299–330.

Armando Coco Numerical modelling of sorption kinetics 48 / 48



Conclusion

Thank you for the attention

Armando Coco Numerical modelling of sorption kinetics 48 / 48


	Introduction and Motivation
	Multiscale modeling of bubble-surfactants
	Bubble-surfactant - 1D
	Bubble-surfactant - 2D and 3D

	Numerical discretization
	Ghost-point technique
	Numerical tests

	Moving bubbles
	Conclusion

