A numerical scheme for evolutive Hamilton Jacobi equations on Networks

E. Carlini Universit`a Sapienza di Roma

joint works with A. Siconolfi (Universit`a Sapienza di Roma)

PRIN 2017

Innovative Numerical Methods for Evolutionary Partial Differential Equations and Applications Final Workshop Dedicated to the memory of Maurizio Falcone February 20-22, 2023

1 [Hamilton Jacobi Equations on Networks](#page-2-0)

2 [A numerical scheme for HJ on Networks](#page-14-0)

イロト イタト イミト イミト 一毛 299 2 / 35

[Hamilton Jacobi Equations on Networks](#page-2-0)

Hamilton Jacobi equation on networks: short review

Stationary case

- Costrained/Relaxation Based [Achdou, Camilli, Cutri, Tchou '14]
- Non symmetric viscosity solutions [Camilli, Schielborn '14]
- Singularly perturbed problem [Achdou, Tchou '15]

Time dependent

- Flux-limited solutions [Imbert, Monneau '17]
- Kirkoff-based [Lions, Souganidis '17, Morfe '20] (multi-dimensional junction, not require convex Hamiltonian)
- Flux-limited solutions [Siconolfi '22] (without special test functions, and perform tests relative to the equations on different arcs separately)

Numerical method for Hamilton Jacobi equation on networks: short review

- Semi-Lagrangian scheme for eikonal equation [Camilli, Festa, Schieborn '12]
- Finite Difference scheme HJB [Costeseque, Lebacque, Monneau '15]
- Semi-Lagrangian scheme for HJB[C., Festa, Forcadel '20]

Hamilton Jacobi equation on networks

- Arcs: regular simple curves γ parameterized in [0, 1]
- Network: Γ a subset of \mathbb{R}^N defined as

$$
\Gamma = \bigcup_{\gamma \in \mathbf{E}} \gamma([0,1])
$$

where E if a finite collection of arcs.

- Vertices: ${\bf V}$ a subset of \mathbb{R}^N given by initial and terminal points of the arcs, which are the unique points where arcs intersect.
- \bullet We fix an orientation \mathbf{E}^+ on Γ , and set

$$
\mathbf{E}_x^+ = \{\gamma \in \mathbf{E}^+ \mid \gamma \text{ incident on } x\}.
$$

- **Connected network: any two vertices are linked by some arc.**
- No loops : arcs with initial and final point coinciding are not admitted. **K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐**

Assumptions

An Hamiltonian on Γ is a family of Hamiltonians

 $H_{\gamma}: [0,1] \times \mathbb{R} \to \mathbb{R}$

indexed by arcs such that are

- (H1) continuous in both arguments;
- (H2) convex in the momentum variable;
- $(H3)$ superlinear in the momentum variable, uniformly in s;

Setting of the problem

We consider the family of equations, for any $\gamma \in \mathbf{E}$

$$
u_t + H_{\gamma}(s, u') = 0 \qquad \text{in } (0, 1) \times (0, T). \tag{HJ\gamma}
$$

with the initial condition

$$
u(x,0) = g(x) \qquad \text{for any } x \in \Gamma
$$

where $g: \Gamma \to \mathbb{R}$ is a Lipschitz continuous function.

Solution of the problem

In order to uniquely select a continuous function $v : \Gamma \times [0, T) \to \mathbb{R}$, $v \in C(\Gamma \times [0, T))$ solution of $(HJ\gamma)$ $(HJ\gamma)$ for any γ , it has been introduce

$$
c_{\gamma} = -\max_s \min_p H_{\gamma}(s,p) \qquad \text{for any arc } \gamma,
$$

and define

Solution of the problem

In order to uniquely select a continuous function $v : \Gamma \times [0, T) \to \mathbb{R}$, $v \in C(\Gamma \times [0, T))$ solution of $(HJ\gamma)$ $(HJ\gamma)$ for any γ , it has been introduce

$$
c_\gamma = - \max_s \min_p H_\gamma(s,p) \qquad \text{for any arc } \gamma,
$$

and define

Definition

A flux limiter is a function $x \mapsto c_x$ from V to R satisfying

$$
c_x \leq \min_{\gamma \in \mathbf{E}_x^+} c_{\gamma} \quad \text{for } x \in \mathbf{V}.
$$

9 / 35

イロト イタト イミト イミト 一毛

Reference: Siconolfi '22, and Imbert and Monneau '17

Link between Lagrangian and flux limiter

We define, for each arc $\gamma \in \mathbf{E}_x^+$, the Lagrangian corresponding to H_γ as

$$
L_{\gamma}(s,\alpha) := \max_{p \in \mathbb{R}} (p\alpha - H_{\gamma}(s,p))
$$

Link between Lagrangian and flux limiter

$$
c_{\gamma} = \min_{s} L_{\gamma}(s, 0)
$$

Ref. Pozza and Siconolfi '22, Imbert and Monneau '17

Definition of the problem (HJΓ)

Let $v : \Gamma \times [0, T) \to \mathbb{R}$, $v \in C(\Gamma \times [0, T))$, such that

- $v \circ \gamma$ is a viscosity solution to (HJ_{γ}) in $(0, 1) \times (0, T)$, for any γ ,
- $v \circ \gamma$ verifies the initial condition: $v(\gamma(s), 0) = q(\gamma(s)),$
- at any $x \in V$, $t_0 \in (0, T)$:

Definition (Sub-solution at a vertex)

For any $\psi(t)\in C^1(U)$, U neighbourhood of t_0 , s.t. $\psi(t_0)=v(x,t_0)$ and $\psi(t) \ge v(x, t)$ for any $t \in U$, $(\psi(t)$ is supertangents to $v(x, \cdot)$ at t_0) satisfy

$$
\frac{d}{dt}\psi(t_0) \leq c_x.
$$

Reference: Siconolfi '22

Super-solution at a vertex

A at any $x \in V$, $t_0 \in (0, T)$:

Definition (Super-solution at a vertex)

If exists a C^1 subtangent $\phi(t)$ to $v(x,\cdot)$ at t_0 such that

 $\frac{d}{dt}\phi(t_0) < c_x,$

then there is an arc γ s.t. $\gamma(1)=x$ and such that all the C^1 subtangents φ in $(1,t_0)$, constrained * to $[0,1]\times[0,T]$, to $v\circ\gamma$ at $(1,t_0)$ satisfy

 $\varphi_t(1, t_0) + H_\gamma(1, \varphi'(1, t_0)) \ge 0.$

* φ is a constrained supertangent to $[0, 1] \times [0, T]$ on (s_0, t_0) if $\varphi(s_0, t_0) = v(\gamma(s_0), t_0)$ and $\varphi(s, t) \ge v(\gamma(s), t)$ in a neighborhood of (s_0, t_0) intersected with $[0, 1] \times [0, T]$ N[o](#page-1-0)te[t](#page-2-0)[h](#page-13-0)at th[e](#page-14-0) arc γ , w[i](#page-13-0)th $\gamma(1) = x$ may change[s in](#page-11-0) [f](#page-13-0)[u](#page-11-0)[nct](#page-12-0)io[n](#page-2-0) [of](#page-14-0) the [ti](#page-0-0)[me.](#page-42-0) イロメ イ押 トイヨ トイヨメ B

Well posedness

Let $(H1)-(H3)$ hold true.

Theorem (A.Siconolfi '22)

Let u, v be continuous sub and supersolution to (HJ) respectively, in $\Gamma \times (0,T)$ with $u(\cdot,0) \le v(\cdot,0)$ in Γ , then $u \le v$ in $\Gamma \times [0,T)$.

Theorem (A.Siconolfi '22)

For any continuous initial datum q and flux limiter c_x , there exists one and only one continuous solution to $(HJ\Gamma)$ in $(0,T)$. If g is Lipschitz continuous, the solution is Lipschitz continuous as well.

[A numerical scheme for HJ on Networks](#page-14-0)

An algorithm–preliminary steps

Given $\Delta x > 0$, $\Delta t > 0$, for $\gamma \in \mathbf{E}^+$ we fix positive integers

$$
N_\gamma^\Delta = \left\lfloor \frac{|\gamma(1)-\gamma(0)|}{\Delta x} \right\rfloor > 0 \quad \text{for any } \gamma \in \mathbf{E}^+, \text{ and} \quad N_T^\Delta = \left\lfloor \frac{T}{\Delta t} \right\rfloor > 0
$$

• We consider a uniform grid on $[0, 1] \times [0, T]$ for each γ , and we set

$$
\mathcal{S}_{\Delta,\gamma} = \{ s_i^{\gamma} = \frac{i}{N_{\gamma}^{\Delta}} \mid i = 0, ..., N_{\gamma}^{\Delta} \}
$$

$$
\mathcal{T}_{\Delta} = \{ t_n = \frac{n}{N_T^{\Delta}} \mid n = 0, ..., N_T^{\Delta} \}
$$

$$
\Gamma_{\Delta} = \bigcup_{\gamma \in \mathbf{E}^+} \gamma(\mathcal{S}_{\Delta,\gamma}) \times \mathcal{T}_{\Delta}
$$

• We solve numerically the equation $(HJ\gamma)$ $(HJ\gamma)$ in $(0, 1) \times (0, T)$ wth initial condition at $t = 0$ given by

$$
(g(\gamma(s^{\gamma}_0)),\cdots,g(\gamma(s^{\gamma}_{N_{\gamma}})))\ \ \text{for any}\ \gamma\in{\bf E}^+
$$

and denote by

$$
u^1_\gamma(s^\gamma_i) \qquad i=1,\cdots,N_\gamma
$$

the approximate solutions so obtained.

• We solve numerically the equation $(HJ\gamma)$ $(HJ\gamma)$ in $(0, 1) \times (0, T)$ wth initial condition at $t = 0$ given by

$$
(g(\gamma(s^{\gamma}_0)),\cdots,g(\gamma(s^{\gamma}_{N_{\gamma}})))\ \ \text{for any}\ \gamma\in{\bf E}^+
$$

and denote by

$$
u^1_\gamma(s^\gamma_i) \qquad i=1,\cdots,N_\gamma
$$

the approximate solutions so obtained.

• We get, for any vertex x , a finite family of values

$$
u^1_\gamma(\gamma^{-1}(x)) \qquad \text{for } \gamma \in \mathbf{E}_x^+.
$$

The compatibility condition between arcs of Γ_x^+ is given by

$$
a = \min\{u_{\gamma}^1(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_x^+\}
$$

$$
u^1(x) = \min\{g(x) + c_x \Delta t, a\}.
$$

The compatibility condition between arcs of Γ_x^+ is given by

$$
a = \min\{u_{\gamma}^1(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_x^+\}
$$

$$
u^1(x) = \min\{g(x) + c_x \Delta t, a\}.
$$

• We have therefore determined, for any arc $\gamma \in \mathbf{E}^+$, a vector

$$
u_{\gamma}^{1} = (u^{1}(0), u_{\gamma}^{1}(s_{1}^{\gamma}), \cdots, u_{\gamma}^{1}(s_{N_{\gamma}-1}^{\gamma}), u^{1}(1))
$$

to use as initial value in the next step.

An algorithm– step $n < N_T$

Given u^{n-1} , we solve numerically the equation $(\mathsf{HJ}\gamma)$ in any $\gamma\in\mathbf{E}^+$ for one time step, and we get

$$
u^n_\gamma = (u^n_\gamma(s^\gamma_0),u^n_\gamma(s^\gamma_1),\cdots,u^n_\gamma(s^\gamma_{N_\gamma-1}),u^n_\gamma(s^\gamma_{N_\gamma}))
$$

An algorithm– step $n < N_T$

Given u^{n-1} , we solve numerically the equation $(\mathsf{HJ}\gamma)$ in any $\gamma\in\mathbf{E}^+$ for one time step, and we get

$$
u^n_\gamma = (u^n_\gamma(s^\gamma_0),u^n_\gamma(s^\gamma_1),\cdots,u^n_\gamma(s^\gamma_{N_\gamma-1}),u^n_\gamma(s^\gamma_{N_\gamma}))
$$

• We compute the value at any vertex x setting

$$
a = \min\{u_{\gamma}^{n}(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_{x}^{+}\}\
$$

$$
u^{n}(x) = \min\{u^{n}(x) + c_{x} \Delta t, a\},
$$

• We iterate untill $n = N_T$

A SL numerical scheme

On each arc $\gamma \in \mathbf{E}^+$, the DPP principle holds

$$
v_{\gamma}(s,t_{n+1}) = \inf_{\mu \in L^{\infty}} \left\{ v_{\gamma}(y_s(\Delta t),t_n) + \int_{t_n}^{t_{n+1}} L_{\gamma}(y_s(\tau),\mu(\tau))d\tau \right\}.
$$

where $y_s(\tau)$ solves

$$
\dot{y}(\tau) = -\mu(\tau) \ \tau \in (t_n, t_{n+1}),
$$
 for a.e. $y(t_{n+1}) = s$

Inside each arc γ , we discretize the backward trajectory as

$$
y_s(\Delta t) \simeq s - \Delta t \mu(t_{n+1}) = s - \Delta t \alpha
$$

and we discretize DPP to solve [\(HJ](#page-7-0) γ) by defining on each arc $\gamma \in \mathbf{E}^+$

$$
S_{\Delta,\gamma}[u](s,t_n) = \min_{\frac{s-1}{\Delta t} \le \alpha \le \frac{s}{\Delta t}} \{ u(\pi_{\Delta,\gamma}(s - \Delta t \alpha), t_n) + \Delta t L_{\gamma}(s, \alpha) \} \tag{1}
$$

where $\pi_{\Delta,\gamma}$ is a constant or linear interpolation on the space grid of the discretize backward trajectory Ref. Falcone, Ferretti 2014 KO K K G K K E K E H K G K K K K K K K K K

19 / 35

A SL numerical scheme

We define the numerical operator: if $x \in \Gamma$ \ V

$$
S_{\Delta}[u](x,t) = \{S_{\Delta,\gamma}[u \circ \gamma](\gamma^{-1}(x),t) \mid \gamma \in \mathbf{E}_x^+\},\
$$

if instead $x \in V$, a vertex.

$$
\widetilde{S}_{\Delta}[u](x,t) = \min\{S_{\Delta,\gamma}[u \circ \gamma](\gamma^{-1}(x),t)| \gamma \in \mathbf{E}_x^+\}
$$

$$
S_{\Delta}[u](x,t) = \min\{\widetilde{S}_{\Delta}[u](x,t), u(x,t) + c_x \Delta t\}
$$

We finally consider the following evolutive explicit scheme corresponding to the above discretization of (HJΓ):

$$
\begin{cases}\n u(x,0) = g(x) \\
u(x,t) = S_{\Delta}[u](x,t-\Delta t))\n\end{cases}
$$
\n(HJT_{\Delta})

for $(x, t) \in \Gamma_{\Delta} \cap \Gamma \times (0, T]$. Let call u_{Δ} the solution of $(HJ\Gamma_{\Delta})$ $(HJ\Gamma_{\Delta})$

Property of the numerical operators

Proposition

Let $\Delta = (\Delta x, \Delta t) \rightarrow (0, 0)$ with $\Delta x/\Delta t \rightarrow 0$, then for any arc γ and for any function $\psi: [0,1] \times [0,T] \rightarrow \mathbb{R}$ of class C^1 we have

$$
\frac{\psi(s,t) - S_{\Delta,\gamma}[\psi](s, t - \Delta t)}{\Delta t} \to \psi_t(s,t) + H_\gamma(s, \psi'(s)) \quad \text{as} \quad \Delta \to 0
$$

locally uniformly in $(0, 1) \times (0, T]$.

Proposition

- S_{Δ} is monotone and invariant by addition of constants
	- i) given $\Delta = (\Delta x, \Delta t)$, and $u_1, u_2 \in B(\Gamma_{\Delta})$ with $u_1 \leq u_2$, we have

 $S_{\Delta}[u_1](x,t) \leq S_{\Delta}[u_2](x,t)$ for all $(x,t) \in \Gamma_{\Delta}$;

ii) given Δ and $u \in B(\Gamma_{\Delta})$, we have for any constant C, and $(x, t) \in \Gamma_{\Delta}$. $S_{\Delta}[u+C](x,t) = S_{\Delta}[u](x,t) + C$ 21/35

Convergence Analysis

We further assume

- (H1) continuous in both arguments;
- (H2) convex in the momentum variable;
- $(H3)$ superlinear in the momentum variable, uniformly in s;
- **(H4)** $s \mapsto H_{\gamma}(s, \mu)$ is Lipschitz continuous

Theorem (Sub-solution property)

Let
$$
\Delta = (\Delta x, \Delta t) \rightarrow (0, 0)
$$
 with $\Delta x / \Delta t \rightarrow 0$, then

 $u \wedge \rightarrow v$

locally uniformly in $\Gamma \times [0, T)$, v is Lipschits and it is viscosity sub-solution to (HJ Γ) with initial datum q.

The difficult point is to show the supersolution condition at the vertices.

Let $x=\gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$
u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)
$$
 (2)

Let $x=\gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$
u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)
$$
 (2)

• then we can define an optimal discrete trajectories $\xi_m(s)$, backward in time, which stays in the arc γ for a time $\delta > 0$

Let $x=\gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$
u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)
$$
 (2)

- then we can define an optimal discrete trajectories $\xi_m(s)$, backward in time, which stays in the arc γ for a time $\delta > 0$
- \bullet $\xi_m(s)$ are uniformly convergent to a trajectory ξ and, since \tilde{v} is subsolution and L_{γ} lower semiconituous, verify

$$
\int_{t_0-\delta}^{t_0} L_{\gamma}(\xi, \dot{\xi}) dt = \tilde{v} \circ \gamma(0, t_0) - \tilde{v} \circ \gamma(\xi(t_0 - \delta), t_0 - \delta).
$$

(see Pozza, Siconolfi '22)

Let $x=\gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$
u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)
$$
 (2)

- **•** then we can define an optimal discrete trajectories $\xi_m(s)$, backward in time, which stays in the arc γ for a time $\delta > 0$
- \bullet $\xi_m(s)$ are uniformly convergent to a trajectory ξ and, since \tilde{v} is subsolution and L_{γ} lower semiconituous, verify

$$
\int_{t_0-\delta}^{t_0} L_{\gamma}(\xi, \dot{\xi}) dt = \tilde{v} \circ \gamma(0, t_0) - \tilde{v} \circ \gamma(\xi(t_0-\delta), t_0-\delta).
$$

(see Pozza, Siconolfi '22)

• $\xi(t_0 - \delta) \neq 0$ (no oscillations for the definition of c_x) $\xi(t_0 - \delta) \neq 1$ $\xi(t_0 - \delta) \neq 1$ $\xi(t_0 - \delta) \neq 1$ (beca[u](#page-26-0)se δ can be chosen sm[all](#page-28-0) [en](#page-30-0)[o](#page-25-0)u[g](#page-29-0)[h](#page-30-0)) \Rightarrow

if by contradiction that there is a C^1 subtangent φ , to $u\circ \gamma$ at $(0,t_0)$ with

$$
\varphi_t(0,t_0)+H_\gamma(0,\varphi'(0,t_0))<0,
$$

by Perron-Ishii method, there exist a new subsoution w s.t.

$$
w(0, t_0) - w(\xi(t_0 - \delta), t_0 - \delta) > \tilde{v} \circ \gamma(0, t_0) - \tilde{v} \circ \gamma(\xi(t_0 - \delta), t_0 - \delta).
$$

=
$$
\int_{t_0 - \delta}^{t_0} L_{\gamma}(\xi, \dot{\xi}) dt
$$

if by contradiction that there is a C^1 subtangent φ , to $u\circ \gamma$ at $(0,t_0)$ with

$$
\varphi_t(0,t_0)+H_\gamma(0,\varphi'(0,t_0))<0,
$$

by Perron-Ishii method, there exist a new subsoution w s.t.

$$
w(0, t_0) - w(\xi(t_0 - \delta), t_0 - \delta) > \tilde{v} \circ \gamma(0, t_0) - \tilde{v} \circ \gamma(\xi(t_0 - \delta), t_0 - \delta).
$$

=
$$
\int_{t_0 - \delta}^{t_0} L_{\gamma}(\xi, \dot{\xi}) dt
$$

• this is a contradiction, since w be a subsolution, implyes

$$
w(s_2, t_2) - w(s_1, t_1) \le \int_{t_1}^{t_2} L_{\gamma}(\eta, \dot{\eta}) dt
$$

for any $(s_i,t_i),\,i=1,2$, with $t_1 < t_2,$ any curve $\eta:[t_1,t_2] \rightarrow [0,1]$ joining s_1 to s_2 **KORK E KERKER KORK**

Main result

Theorem

Let
$$
\Delta = (\Delta x, \Delta t) \rightarrow (0, 0)
$$
 with $\Delta x / \Delta t \rightarrow 0$, then

 $u_{\Delta} \rightarrow v$

locally uniformly in $\Gamma \times [0, T)$, v viscosity solution to (HJT) with Lipscht continuous initial datum g .

25 / 35

 QQ

K ロ > K @ > K 경 > K 경 > 시 경

[Numerical tests](#page-33-0)

Test 1: very simple network

We consider a triangle as network, $L_{\gamma_i}(x,q) = \frac{q^2}{2}$ $\frac{1}{2}$, for all $i = 1, 2, 3$, admissible flux limiters $c_1 = c_2 = c_3 = -5$ and as initial condition $g = 0$

Approximated solution at final time $T = 1$ with $c_1 = c_2 = c_3 = -5$, with $\Delta x = 0.05$ and $\Delta t = \frac{\Delta x}{2}$ 2 The hyperbolic CFL condition $\max_{\gamma,s}|u'(\gamma(s))|\Delta t \leq \Delta x$ is not verified, since the Courant number $\nu=\max\limits_{\gamma,s}[u'(\gamma(s))|\frac{\Delta t}{\Delta x}=\sqrt{10}/2\geq1.$ $\nu=\max\limits_{\gamma,s}[u'(\gamma(s))|\frac{\Delta t}{\Delta x}=\sqrt{10}/2\geq1.$ 27 / 35

Comparison with pure SL scheme

Comparison with pure SL scheme (C., Festa, Forcadel)

Table: Columns 2-4 shows errors, and computational time for the new scheme. Columns 5-7 shows errors and computational time for the SL scheme

Remark: In the numerical simulation, we have used a linear interpolation. This led to a truncation errors: $\frac{\Delta x^2}{\Delta x} + \Delta t$, which means that for $\Delta t = O(\Delta x)$ a first order rate of convergence is expected

Test 1: very simple network

Let us now choose cost functions depending on x , as

$$
L(x,q) = \begin{cases} \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 + 10x_2^2 & \text{if } x \in \gamma_2, \\ \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 + 10x_2^2 & \text{if } x \in \gamma_3, \\ \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 & \text{if } x \in \gamma_1. \end{cases}
$$

Initial condition (left) and approximated solution (center, right) at final time $T=1$ with $c_1=c_2=c_3=2$, computed with $\Delta x=6.25\cdot 10^{-2}$ and $\Delta t = \frac{\Delta x}{2}$ $\frac{\Delta x}{2}$. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 L^∞ and L^1 errors computed $\Delta t = \Delta x/2, \, T=1.$ Columns 2-4 show errors and computational time for the new scheme. Columns 5-7 show errors and computational time for the SL

For any $\gamma \in \mathbf{E}^+$, let $a_\gamma(s):[0,1] \to \mathbb{R}^-$ be a Lipschitz function, and consider the following Hamiltonians:

 $H_{\gamma}(s, p) = a_{\gamma}(s)|p|.$

(Convergence analysis can be generalised for this case)

31 / 35

We first set all the speeds $a_{\gamma}=1$ and all flux limiters equal to 0. In this case, the flux limiter has no influence in the evolution, then an initial front given by the level set -0.2 would propagate in all the network in a time given by the level $T^* = 1 + 1.2\sqrt{ }$ $2 \simeq 2.6970...$

Left: v_{Δ} ai time $T = 1.5$. Right: level set 0.2 at time $T = 1.5$ (blue line).

We first set all the speeds $a_{\gamma}=1$ and all flux limiters equal to 0. In this case, the flux limiter has no influence in the evolution, then an initial front given by the level set -0.2 would propagate in all the network in a time given by the level $T^* = 1 + 1.2\sqrt{ }$ $2 \simeq 2.6970...$

(Loading...) (Loading...)

Left: $v \wedge$ ai time $T = 1.5$. Right: level set 0.2 at time $T = 1.5$ (blue line).

Left: v_{Δ} at time $T = 2.69$. Right: level set 0.2 at time $T = 2.67$ (blue line).

References

F. Camilli, A.Festa, D. Schieborn

Shortest paths and Eikonal equations on a graph.

Appl. Numer. Math. 73 33–47 (2013).

C. Imbert, R. Monneau.

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Annales Scientifiques de l'ENS, 50 (2), 357–448 (2017).

A.Festa, N. Forcadel, E. Carlini

A semi-Lagrangian scheme for Hamilton-Jacobi equations on networks and application to traffic flow models.

arXiv preprint, arXiv:1804.09429, (2018).

M. Pozza, and A. Siconolfi,

Lax–Oleinik formula on networks arXiv:2109.13587.

A. Siconolfi,

Time-dependent Hamilton-Jacobi equations on networks

J. Math.PuresAppl.163(2022)702–738