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Hamilton Jacobi equation on networks: short review

Stationary case

Costrained/Relaxation Based [Achdou, Camilli, Cutri, Tchou ’14]

Non symmetric viscosity solutions [Camilli, Schielborn ’14]

Singularly perturbed problem [Achdou, Tchou ’15]

Time dependent

Flux-limited solutions [Imbert, Monneau ’17]

Kirkoff-based [Lions, Souganidis ’17, Morfe ’20] (multi-dimensional
junction, not require convex Hamiltonian)

Flux-limited solutions [Siconolfi ’22] (without special test functions,
and perform tests relative to the equations on different arcs
separately)

4 / 35



Numerical method for Hamilton Jacobi equation on
networks: short review

Semi-Lagrangian scheme for eikonal equation [Camilli, Festa,
Schieborn ’12]

Finite Difference scheme HJB [Costeseque, Lebacque, Monneau ’15]

Semi-Lagrangian scheme for HJB[C., Festa, Forcadel ’20 ]
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Hamilton Jacobi equation on networks

Arcs: regular simple curves γ parameterized in [0, 1]

Network: Γ a subset of RN defined as

Γ =
⋃
γ∈E

γ([0, 1])

where E if a finite collection of arcs.

Vertices: V a subset of RN given by initial and terminal points
of the arcs, which are the unique points where arcs intersect.

We fix an orientation E+ on Γ, and set

E+
x = {γ ∈ E+ | γ incident onx}.

Connected network: any two vertices are linked by some arc.

No loops : arcs with initial and final point coinciding are not
admitted.

6 / 35



Assumptions

An Hamiltonian on Γ is a family of Hamiltonians

Hγ : [0, 1]× R→ R

indexed by arcs such that are

(H1) continuous in both arguments;

(H2) convex in the momentum variable;

(H3) superlinear in the momentum variable, uniformly in s;

7 / 35



Setting of the problem

We consider the family of equations, for any γ ∈ E

ut +Hγ(s, u′) = 0 in (0, 1)× (0, T ). (HJγ)

with the initial condition

u(x, 0) = g(x) for any x ∈ Γ

where g : Γ→ R is a Lipschitz continuous function.
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Solution of the problem

In order to uniquely select a continuous function v : Γ× [0, T )→ R ,
v ∈ C(Γ× [0, T )) solution of (HJγ) for any γ, it has been introduce

cγ = −max
s

min
p
Hγ(s, p) for any arc γ,

and define

Definition

A flux limiter is a function x 7→ cx from V to R satisfying

cx ≤ min
γ∈E+

x

cγ for x ∈ V.

Reference: Siconolfi ’22, and Imbert and Monneau ’17
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Link between Lagrangian and flux limiter

We define, for each arc γ ∈ E+
x , the Lagrangian corresponding to Hγ as

Lγ(s, α) := max
p∈R

(pα−Hγ(s, p))

Link between Lagrangian and flux limiter

cγ = min
s
Lγ(s, 0)

Ref. Pozza and Siconolfi ’22, Imbert and Monneau ’17
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Definition of the problem (HJΓ)

Let v : Γ× [0, T )→ R , v ∈ C(Γ× [0, T )), such that

v ◦ γ is a viscosity solution to (HJγ) in (0, 1)× (0, T ), for any γ,

v ◦ γ verifies the initial condition: v(γ(s), 0) = g(γ(s)),

at any x ∈ V, t0 ∈ (0, T ) :

Definition (Sub-solution at a vertex )

For any ψ(t) ∈ C1(U), U neighbourhood of t0, s.t. ψ(t0) = v(x, t0) and
ψ(t) ≥ v(x, t) for any t ∈ U , ( ψ(t) is supertangents to v(x, ·) at t0 )
satisfy

d

dt
ψ(t0) ≤ cx.

Reference: Siconolfi ’22
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Super-solution at a vertex

A at any x ∈ V, t0 ∈ (0, T ) :

Definition (Super-solution at a vertex )

If exists a C1 subtangent φ(t) to v(x, ·) at t0 such that

d

dt
φ(t0) < cx,

then there is an arc γ s.t. γ(1) = x and such that all the C1 subtangents
ϕ in (1, t0), constrained∗ to [0, 1]× [0, T ], to v ◦ γ at (1, t0) satisfy

ϕt(1, t0) +Hγ(1, ϕ′(1, t0)) ≥ 0.

∗ ϕ is a constrained supertangent to [0, 1]× [0, T ] on (s0, t0) if

ϕ(s0, t0) = v(γ(s0), t0) and ϕ(s, t) ≥ v(γ(s), t) in a neighborhood of (s0, t0)

intersected with [0, 1]× [0, T ]

Note that the arc γ, with γ(1) = x may changes in function of the time.
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Well posedness

Let (H1)-(H3) hold true.

Theorem (A.Siconolfi ’22)

Let u, v be continuous sub and supersolution to (HJΓ) respectively, in
Γ× (0, T ) with u(·, 0) ≤ v(·, 0) in Γ, then u ≤ v in Γ× [0, T ).

Theorem (A.Siconolfi ’22)

For any continuous initial datum g and flux limiter cx, there exists one and
only one continuous solution to (HJΓ) in (0, T ).
If g is Lipschitz continuous, the solution is Lipschitz continuous as well.
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A numerical scheme for HJ on Networks
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An algorithm–preliminary steps

Given ∆x > 0, ∆t > 0, for γ ∈ E+ we fix positive integers

N∆
γ =

⌊
|γ(1)− γ(0)|

∆x

⌋
> 0 for any γ ∈ E+, and N∆

T =

⌊
T

∆t

⌋
> 0

We consider a uniform grid on [0, 1]× [0, T ] for each γ, and we set

S∆,γ = {sγi =
i

N∆
γ

| i = 0, . . . , N∆
γ }

T∆ = {tn =
nT

N∆
T

| n = 0, . . . , N∆
T }

Γ∆ =
⋃
γ∈E+

γ(S∆,γ)× T∆
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An algorithm–step 0

We solve numerically the equation (HJγ) in (0, 1)× (0, T ) wth initial
condition at t = 0 given by

(g(γ(sγ0)), · · · , g(γ(sγNγ ))) for any γ ∈ E+

and denote by
u1
γ(sγi ) i = 1, · · · , Nγ

the approximate solutions so obtained.

We get, for any vertex x, a finite family of values

u1
γ(γ−1(x)) for γ ∈ E+

x .
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An algorithm–step 1

The compatibility condition between arcs of Γ+
x is given by

a = min{u1
γ(γ−1(x)) | γ ∈ E+

x }
u1(x) = min{g(x) + cx ∆t, a}.

We have therefore determined, for any arc γ ∈ E+, a vector

u1
γ = (u1(0), u1

γ(sγ1), · · · , u1
γ(sγNγ−1), u1(1))

to use as initial value in the next step.
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An algorithm– step n < NT

Given un−1, we solve numerically the equation (HJγ) in any γ ∈ E+

for one time step, and we get

unγ = (unγ (sγ0), unγ (sγ1), · · · , unγ (sγNγ−1), unγ (sγNγ ))

We compute the value at any vertex x setting

a = min{unγ (γ−1(x)) | γ ∈ E+
x }

un(x) = min{un(x) + cx ∆t, a},

We iterate untill n = NT
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A SL numerical scheme

On each arc γ ∈ E+, the DPP principle holds

vγ(s, tn+1) = inf
µ∈L∞

{
vγ(ys(∆t), tn) +

∫ tn+1

tn

Lγ(ys(τ), µ(τ))dτ

}
.

where ys(τ) solves

ẏ(τ) = −µ(τ) τ ∈ (tn, tn+1), for a.e. y(tn+1) = s

Inside each arc γ, we discretize the backward trajectory as

ys(∆t) ' s−∆tµ(tn+1) = s−∆tα

and we discretize DPP to solve (HJγ) by defining on each arc γ ∈ E+

S∆,γ [u](s, tn) = min
s−1
∆t
≤α≤ s

∆t

{u(π∆,γ(s−∆tα), tn) + ∆tLγ(s, α)} (1)

where π∆,γ is a constant or linear interpolation on the space grid of the
discretize backward trajectory
Ref. Falcone, Ferretti 2014
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A SL numerical scheme

We define the numerical operator: if x ∈ Γ∆ \V

S∆[u](x, t) = {S∆,γ [u ◦ γ](γ−1(x), t) | γ ∈ E+
x },

if instead x ∈ V, a vertex,

S̃∆[u](x, t) = min{S∆,γ [u ◦ γ](γ−1(x), t)| γ ∈ E+
x }

S∆[u](x, t) = min{S̃∆[u](x, t), u(x, t) + cx∆t}

We finally consider the following evolutive explicit scheme corresponding
to the above discretization of (HJΓ):{

u(x, 0) = g(x)
u(x, t) = S∆[u](x, t−∆t))

(HJΓ∆)

for (x, t) ∈ Γ∆ ∩ Γ× (0, T ]. Let call u∆ the solution of (HJΓ∆)
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Property of the numerical operators

Proposition

Let ∆ = (∆x,∆t)→ (0, 0) with ∆x/∆t→ 0, then for any arc γ and for
any function ψ : [0, 1]× [0, T ]→ R of class C1 we have

ψ(s, t)− S∆,γ [ψ](s, , t−∆t)

∆t
→ ψt(s, t) +Hγ(s, ψ′(s)) as ∆→ 0

locally uniformly in (0, 1)× (0, T ].

Proposition

S∆ is monotone and invariant by addition of constants

i) given ∆ = (∆x,∆t), and u1, u2 ∈ B(Γ∆) with u1 ≤ u2, we have

S∆[u1](x, t) ≤ S∆[u2](x, t) for all (x, t) ∈ Γ∆;

ii) given ∆ and u ∈ B(Γ∆), we have for any constant C, and
(x, t) ∈ Γ∆.

S∆[u+ C](x, t) = S∆[u](x, t) + C 21 / 35



Convergence Analysis

We further assume

(H1) continuous in both arguments;

(H2) convex in the momentum variable;

(H3) superlinear in the momentum variable, uniformly in s;

(H4) s 7→ Hγ(s, µ) is Lipschitz continuous

Theorem (Sub-solution property)

Let ∆ = (∆x,∆t)→ (0, 0) with ∆x/∆t→ 0, then

u∆ → v

locally uniformly in Γ× [0, T ), v is Lipschits and it is viscosity sub-solution
to (HJΓ) with initial datum g .

The difficult point is to show the supersolution condition at the vertices.
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Supersolution condition at the vertices

Let x = γ(0) be a vertex s.t. ψ′(t0) < cx for some C1 subtangent ψ to
v(x, ·) at t0 ∈ (0, T ], and tm ∈ T∆m with tm converging t0, let’s call
um := u∆m and ṽ := limm→∞ umthen

there is an arc γ ∈ Ex such that

um(x, tm) = S∆,γ [um ◦ γ](γ−1(x), tm −∆mt) (2)

then we can define an optimal discrete trajectories ξm(s), backward in
time, which stays in the arc γ for a time δ > 0
ξm(s) are uniformly convergent to a trajectory ξ and, since ṽ is
subsolution and Lγ lower semiconituous, verify∫ t0

t0−δ
Lγ(ξ, ξ̇) dt = ṽ ◦ γ(0, t0)− ṽ ◦ γ(ξ(t0 − δ), t0 − δ).

(see Pozza, Siconolfi ’22)

ξ(t0 − δ) 6= 0(no oscillations for the definition of cx)
ξ(t0 − δ) 6= 1 (because δ can be chosen small enough)
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Supersolution condition at the vertices

if by contradiction that there is a C1 subtangent ϕ, to u ◦ γ at (0, t0)
with

ϕt(0, t0) +Hγ(0, ϕ′(0, t0)) < 0,

by Perron-Ishii method, there exist a new subsoution w s.t.

w(0, t0)− w(ξ(t0 − δ), t0 − δ) > ṽ ◦ γ(0, t0)− ṽ ◦ γ(ξ(t0 − δ), t0 − δ).)

=

∫ t0

t0−δ
Lγ(ξ, ξ̇) dt

this is a contradiction, since w be a subsolution , implyes

w(s2, t2)− w(s1, t1) ≤
∫ t2

t1

Lγ(η, η̇) dt

for any (si, ti), i = 1, 2, with t1 < t2, any curve η : [t1, t2]→ [0, 1]
joining s1 to s2
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Main result

Theorem

Let ∆ = (∆x,∆t)→ (0, 0) with ∆x/∆t→ 0, then

u∆ → v

locally uniformly in Γ× [0, T ), v viscosity solution to (HJΓ) with Lipscht
continuous initial datum g .

25 / 35



Numerical tests
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Test 1: very simple network

We consider a triangle as network, Lγi(x, q) = q2

2 , for all i = 1, 2, 3,
admissible flux limiters c1 = c2 = c3 = −5 and as initial condition g = 0

Approximated solution at final time T = 1with c1 = c2 = c3 = −5, with
∆x = 0.05 and ∆t = ∆x

2
The hyperbolic CFL condition maxγ,s |u′(γ(s))|∆t ≤ ∆x is not verified,
since the Courant number ν = max

γ,s
|u′(γ(s))|∆t∆x =

√
10/2 > 1.
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Comparison with pure SL scheme

Comparison with pure SL scheme (C., Festa, Forcadel)

∆x E∞ E1 time E∞ E1 time
1.00 · 10−1 3.57 · 10−2 1.38 · 10−2 0.01s 2.10 · 10−5 5.18 · 10−6 0.08s
5.00 · 10−2 1.74 · 10−2 6.60 · 10−3 0.07s 1.19 · 10−5 1.02 · 10−6 0.41s
2.50 · 10−2 8.56 · 10−3 3.25 · 10−3 0.47s 9.79 · 10−6 2.57 · 10−7 2.10s
1.25 · 10−2 4.25 · 10−3 1.61 · 10−3 3.54s 4.29 · 10−7 1.15 · 10−7 14.0s
6.25 · 10−3 2.11 · 10−3 8.15 · 10−4 28.3s 3.49 · 10−8 8.45 · 10−9 99.0s

Table: Columns 2-4 shows errors, and computational time for the new scheme.
Columns 5-7 shows errors and computational time for the SL scheme

Remark: In the numerical simulation, we have used a linear interpolation.
This led to a truncation errors: ∆x2

∆x + ∆t, which means that for
∆t = O(∆x) a first order rate of convergence is expected
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Test 1: very simple network

Let us now choose cost functions depending on x, as

L(x, q) =


|q|2
2 + 5|x1 − 0.5|2 + 5|x2 − 0.5|2 + 10x22 if x ∈ γ2,
|q|2
2 + 5|x1 − 0.5|2 + 5|x2 − 0.5|2 + 10x22 if x ∈ γ3,
|q|2
2 + 5|x1 − 0.5|2 + 5|x2 − 0.5|2 if x ∈ γ1.

Initial condition (left) and approximated solution (center, right) at final
time T = 1 with c1 = c2 = c3 = 2 , computed with ∆x = 6.25 · 10−2 and
∆t = ∆x

2 .
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Test 1: very simple network

∆x E∞ E1 time E∞ E1 time
1.00 · 10−1 1.93 · 10−1 1.49 · 10−1 0.03s 1.93 · 10−1 1.34 · 10−1 0.28s
5.00 · 10−2 1.07 · 10−1 7.57 · 10−2 0.16s 1.04 · 10−1 6.94 · 10−2 1.19s
2.50 · 10−2 5.77 · 10−2 7.67 · 10−2 0.70s 5.34 · 10−2 3.43 · 10−2 7.66s
1.25 · 10−2 2.90 · 10−2 1.73 · 10−2 5.26s 2.55 · 10−2 1.69 · 10−2 56.3s
6.25 · 10−3 1.42 · 10−2 7.85 · 10−3 40.1s 1.17 · 10−2 7.46 · 10−3 444s

L∞ and L1 errors computed ∆t = ∆x/2, T = 1. Columns 2-4 show errors
and computational time for the new scheme. Columns 5-7 show errors and
computational time for the SL
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Test 2:Front propagation

For any γ ∈ E+, let aγ(s) : [0, 1]→ R− be a Lipschitz function, and
consider the following Hamiltonians:

Hγ(s, p) = aγ(s)|p|.
(Convergence analysis can be generalised for this case)

Initial condition
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Test 2:Front propagation

We first set all the speeds aγ = 1 and all flux limiters equal to 0. In this
case, the flux limiter has no influence in the evolution, then an initial front
given by the level set -0.2 would propagate in all the network in a time
T ∗ = 1 + 1.2

√
2 ' 2.6970...

Left: v∆ ai time T = 1.5. Right: level set 0.2 at time T = 1.5 (blue line).
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Test 2:Front propagation

Left: v∆ at time T = 2.69.Right: level set 0.2 at time T = 2.67 (blue line).
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