A numerical scheme for evolutive Hamilton Jacobi equations on Networks

E. Carlini Università Sapienza di Roma

joint works with A. Siconolfi (Università Sapienza di Roma)

PRIN 2017

Innovative Numerical Methods for Evolutionary Partial Differential Equations and Applications Final Workshop Dedicated to the memory of Maurizio Falcone February 20-22, 2023

2 A numerical scheme for HJ on Networks

Hamilton Jacobi Equations on Networks

Hamilton Jacobi equation on networks: short review

Stationary case

- Costrained/Relaxation Based [Achdou, Camilli, Cutri, Tchou '14]
- Non symmetric viscosity solutions [Camilli, Schielborn '14]
- Singularly perturbed problem [Achdou, Tchou '15]

Time dependent

- Flux-limited solutions [Imbert, Monneau '17]
- Kirkoff-based [Lions, Souganidis '17, Morfe '20] (multi-dimensional junction, not require convex Hamiltonian)
- Flux-limited solutions [Siconolfi '22] (without special test functions, and perform tests relative to the equations on different arcs separately)

Numerical method for Hamilton Jacobi equation on networks: short review

- Semi-Lagrangian scheme for eikonal equation [Camilli, Festa, Schieborn '12]
- Finite Difference scheme HJB [Costeseque, Lebacque, Monneau '15]
- Semi-Lagrangian scheme for HJB[C., Festa, Forcadel '20]

Hamilton Jacobi equation on networks

- Arcs: regular simple curves γ parameterized in [0,1]
- Network: Γ a subset of \mathbb{R}^N defined as

$$\Gamma = \bigcup_{\gamma \in \mathbf{E}} \gamma([0,1])$$

where ${\bf E}$ if a finite collection of arcs.

- Vertices: V a subset of \mathbb{R}^N given by initial and terminal points of the arcs, which are the unique points where arcs intersect.
- \bullet We fix an orientation ${\bf E}^+$ on Γ , and set

$$\mathbf{E}_x^+ = \{ \gamma \in \mathbf{E}^+ \mid \gamma \text{ incident on } x \}.$$

- Connected network: any two vertices are linked by some arc.
- No loops : arcs with initial and final point coinciding are not admitted.

Assumptions

An Hamiltonian on Γ is a family of Hamiltonians

 $H_{\gamma}:[0,1]\times\mathbb{R}\to\mathbb{R}$

indexed by arcs such that are

- (H1) continuous in both arguments;
- (H2) convex in the momentum variable;
- (H3) superlinear in the momentum variable, uniformly in s;

Setting of the problem

We consider the family of equations, for any $\gamma \in {f E}$

$$u_t + H_{\gamma}(s, u') = 0$$
 in $(0, 1) \times (0, T)$. (HJ γ)

with the initial condition

$$u(x,0) = g(x)$$
 for any $x \in \Gamma$

where $g: \Gamma \to \mathbb{R}$ is a Lipschitz continuous function.

Solution of the problem

In order to uniquely select a continuous function $v:\Gamma\times[0,T)\to\mathbb{R}$, $v\in C(\Gamma\times[0,T))$ solution of (HJ $\gamma)$ for any γ , it has been introduce

$$c_{\gamma} = - \max_{s} \min_{p} H_{\gamma}(s, p)$$
 for any arc γ ,

and define

Solution of the problem

In order to uniquely select a continuous function $v:\Gamma\times[0,T)\to\mathbb{R}$, $v\in C(\Gamma\times[0,T))$ solution of (HJ γ) for any γ , it has been introduce

$$c_{\gamma} = - \max_{s} \min_{p} H_{\gamma}(s, p)$$
 for any arc γ ,

and define

Definition

A flux limiter is a function $x \mapsto c_x$ from V to \mathbb{R} satisfying

$$c_x \le \min_{\gamma \in \mathbf{E}_x^+} c_\gamma \quad \text{for } x \in \mathbf{V}.$$

Reference: Siconolfi '22, and Imbert and Monneau '17

Link between Lagrangian and flux limiter

We define, for each arc $\gamma \in \mathbf{E}^+_x$, the Lagrangian corresponding to H_γ as

$$L_{\gamma}(s,\alpha) := \max_{p \in \mathbb{R}} (p\alpha - H_{\gamma}(s,p))$$

Link between Lagrangian and flux limiter

$$c_{\gamma} = \min_{s} L_{\gamma}(s, 0)$$

Ref. Pozza and Siconolfi '22, Imbert and Monneau '17

Definition of the problem $(HJ\Gamma)$

Let $v:\Gamma\times [0,T)\to \mathbb{R}$, $v\in C(\Gamma\times [0,T)),$ such that

- $v \circ \gamma$ is a viscosity solution to (HJ_{γ}) in $(0,1) \times (0,T)$, for any γ ,
- $v \circ \gamma$ verifies the initial condition: $v(\gamma(s), 0) = g(\gamma(s))$,
- at any $x \in \mathbf{V}$, $t_0 \in (0,T)$:

Definition (Sub-solution at a vertex)

For any $\psi(t) \in C^1(U)$, U neighbourhood of t_0 , s.t. $\psi(t_0) = v(x, t_0)$ and $\psi(t) \ge v(x, t)$ for any $t \in U$, ($\psi(t)$ is supertangents to $v(x, \cdot)$ at t_0) satisfy

$$\frac{d}{dt}\psi(t_0) \le c_x.$$

Reference: Siconolfi '22

Super-solution at a vertex

A at any $x \in \mathbf{V}$, $t_0 \in (0,T)$:

Definition (Super-solution at a vertex)

If exists a C^1 subtangent $\phi(t)$ to $v(x, \cdot)$ at t_0 such that

 $\frac{d}{dt}\phi(t_0) < c_x,$

then there is an arc γ s.t. $\gamma(1) = x$ and such that all the C^1 subtangents φ in $(1, t_0)$, constrained* to $[0, 1] \times [0, T]$, to $v \circ \gamma$ at $(1, t_0)$ satisfy

$$\varphi_t(1, t_0) + H_{\gamma}(1, \varphi'(1, t_0)) \ge 0.$$

* φ is a constrained supertangent to $[0,1] \times [0,T]$ on (s_0,t_0) if $\varphi(s_0,t_0) = v(\gamma(s_0),t_0)$ and $\varphi(s,t) \ge v(\gamma(s),t)$ in a neighborhood of (s_0,t_0) intersected with $[0,1] \times [0,T]$ Note that the arc γ , with $\gamma(1) = x$ may changes in function of the time.

Well posedness

Let (H1)-(H3) hold true.

Theorem (A.Siconolfi '22)

Let u, v be continuous sub and supersolution to (HJ Γ) respectively, in $\Gamma \times (0,T)$ with $u(\cdot,0) \leq v(\cdot,0)$ in Γ , then $u \leq v$ in $\Gamma \times [0,T)$.

Theorem (A.Siconolfi '22)

For any continuous initial datum g and flux limiter c_x , there exists one and only one continuous solution to (HJ Γ) in (0,T). If g is Lipschitz continuous, the solution is Lipschitz continuous as well.

A numerical scheme for HJ on Networks

An algorithm-preliminary steps

• Given $\Delta x > 0$, $\Delta t > 0$, for $\gamma \in \mathbf{E}^+$ we fix positive integers

$$N_{\gamma}^{\Delta} = \left\lfloor \frac{|\gamma(1) - \gamma(0)|}{\Delta x} \right\rfloor > 0 \quad \text{for any } \gamma \in \mathbf{E}^+ \text{, and} \quad N_T^{\Delta} = \left\lfloor \frac{T}{\Delta t} \right\rfloor > 0$$

 \bullet We consider a uniform grid on $[0,1]\times[0,T]$ for each $\gamma,$ and we set

$$S_{\Delta,\gamma} = \{s_i^{\gamma} = \frac{i}{N_{\gamma}^{\Delta}} \mid i = 0, \dots, N_{\gamma}^{\Delta}\}$$
$$\mathcal{T}_{\Delta} = \{t_n = \frac{nT}{N_T^{\Delta}} \mid n = 0, \dots, N_T^{\Delta}\}$$
$$\Gamma_{\Delta} = \bigcup_{\gamma \in \mathbf{E}^+} \gamma(\mathcal{S}_{\Delta,\gamma}) \times \mathcal{T}_{\Delta}$$

15 / 35

• We solve numerically the equation (HJ γ) in $(0,1) \times (0,T)$ wth initial condition at t = 0 given by

$$(g(\gamma(s_0^{\gamma})),\cdots,g(\gamma(s_{N_{\gamma}}^{\gamma})))$$
 for any $\gamma\in {f E}^+$

and denote by

$$u_{\gamma}^1(s_i^{\gamma}) \qquad i=1,\cdots,N_{\gamma}$$

the approximate solutions so obtained.

• We solve numerically the equation (HJ γ) in $(0,1) \times (0,T)$ wth initial condition at t = 0 given by

$$(g(\gamma(s_0^{\gamma})),\cdots,g(\gamma(s_{N_{\gamma}}^{\gamma})))$$
 for any $\gamma\in {f E}^+$

and denote by

$$u_{\gamma}^1(s_i^{\gamma}) \qquad i=1,\cdots,N_{\gamma}$$

the approximate solutions so obtained.

• We get, for any vertex x, a finite family of values

$$u_{\gamma}^{1}(\gamma^{-1}(x))$$
 for $\gamma \in \mathbf{E}_{x}^{+}$.

• The compatibility condition between arcs of Γ_x^+ is given by

$$a = \min\{u_{\gamma}^{1}(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_{x}^{+}\}$$
$$u^{1}(x) = \min\{g(x) + c_{x} \Delta t, a\}.$$

• The compatibility condition between arcs of Γ_x^+ is given by

$$a = \min\{u_{\gamma}^{1}(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_{x}^{+}\}\$$
$$u^{1}(x) = \min\{g(x) + c_{x} \Delta t, a\}.$$

• We have therefore determined, for any arc $\gamma \in {f E}^+$, a vector

$$u_{\gamma}^{1} = (u^{1}(0), u_{\gamma}^{1}(s_{1}^{\gamma}), \cdots, u_{\gamma}^{1}(s_{N_{\gamma}-1}^{\gamma}), u^{1}(1))$$

to use as initial value in the next step.

An algorithm– step $n < N_T$

• Given u^{n-1} , we solve numerically the equation (HJ γ) in any $\gamma \in \mathbf{E}^+$ for one time step, and we get

$$u_{\gamma}^{n} = (u_{\gamma}^{n}(s_{0}^{\gamma}), u_{\gamma}^{n}(s_{1}^{\gamma}), \cdots, u_{\gamma}^{n}(s_{N_{\gamma}-1}^{\gamma}), u_{\gamma}^{n}(s_{N_{\gamma}}^{\gamma}))$$

An algorithm– step $n < N_T$

• Given u^{n-1} , we solve numerically the equation (HJ γ) in any $\gamma \in \mathbf{E}^+$ for one time step, and we get

$$u_{\gamma}^{n} = (u_{\gamma}^{n}(s_{0}^{\gamma}), u_{\gamma}^{n}(s_{1}^{\gamma}), \cdots, u_{\gamma}^{n}(s_{N_{\gamma}-1}^{\gamma}), u_{\gamma}^{n}(s_{N_{\gamma}}^{\gamma}))$$

• We compute the value at any vertex x setting

$$a = \min\{u_{\gamma}^{n}(\gamma^{-1}(x)) \mid \gamma \in \mathbf{E}_{x}^{+}\}\$$
$$u^{n}(x) = \min\{u^{n}(x) + c_{x} \Delta t, a\},$$

• We iterate untill $n = N_T$

A SL numerical scheme

On each arc $\gamma \in \mathbf{E}^+$, the DPP principle holds

$$v_{\gamma}(s,t_{n+1}) = \inf_{\mu \in L^{\infty}} \left\{ v_{\gamma}(y_s(\Delta t),t_n) + \int_{t_n}^{t_{n+1}} L_{\gamma}(y_s(\tau),\mu(\tau))d\tau \right\}.$$

where $y_s(\tau)$ solves

$$\dot{y}(au)=-\mu(au)\; au\in(t_n,t_{n+1}), ext{ for a.e. } y(t_{n+1})=s$$

Inside each arc γ , we discretize the backward trajectory as

$$y_s(\Delta t) \simeq s - \Delta t \mu(t_{n+1}) = s - \Delta t \alpha$$

and we discretize DPP to solve (HJ γ) by defining on each arc $\gamma \in {f E}^+$

$$S_{\Delta,\gamma}[u](s,t_n) = \min_{\frac{s-1}{\Delta t} \le \alpha \le \frac{s}{\Delta t}} \{ u(\pi_{\Delta,\gamma}(s-\Delta t\alpha),t_n) + \Delta t L_{\gamma}(s,\alpha) \}$$
(1)

where $\pi_{\Delta,\gamma}$ is a constant or linear interpolation on the space grid of the discretize backward trajectory Ref. Falcone, Ferretti 2014

A SL numerical scheme

We define the numerical operator: if $x \in \Gamma_{\Delta} \setminus \mathbf{V}$

$$S_{\Delta}[u](x,t) = \{S_{\Delta,\gamma}[u \circ \gamma](\gamma^{-1}(x),t) \mid \gamma \in \mathbf{E}_x^+\},\$$

if instead $x \in \mathbf{V}$, a vertex,

$$\widetilde{S}_{\Delta}[u](x,t) = \min\{S_{\Delta,\gamma}[u \circ \gamma](\gamma^{-1}(x),t) | \gamma \in \mathbf{E}_{x}^{+}\}$$

$$S_{\Delta}[u](x,t) = \min\{\widetilde{S}_{\Delta}[u](x,t), u(x,t) + c_{x}\Delta t\}$$

We finally consider the following evolutive explicit scheme corresponding to the above discretization of $(HJ\Gamma)$:

$$\begin{cases} u(x,0) = g(x) \\ u(x,t) = S_{\Delta}[u](x,t-\Delta t)) \end{cases}$$
(HJ Γ_{Δ})

for $(x,t) \in \Gamma_{\Delta} \cap \Gamma \times (0,T]$. Let call u_{Δ} the solution of $(HJ\Gamma_{\Delta})$

Property of the numerical operators

Proposition

Let $\Delta = (\Delta x, \Delta t) \rightarrow (0, 0)$ with $\Delta x / \Delta t \rightarrow 0$, then for any arc γ and for any function $\psi : [0, 1] \times [0, T] \rightarrow \mathbb{R}$ of class C^1 we have

$$\frac{\psi(s,t) - S_{\Delta,\gamma}[\psi](s,t-\Delta t)}{\Delta t} \to \psi_t(s,t) + H_\gamma(s,\psi'(s)) \quad \text{as} \quad \Delta \to 0$$

locally uniformly in $(0,1) \times (0,T]$.

Proposition

S_{Δ} is monotone and invariant by addition of constants

i) given $\Delta = (\Delta x, \Delta t)$, and $u_1, u_2 \in B(\Gamma_{\Delta})$ with $u_1 \leq u_2$, we have

$$S_{\Delta}[u_1](x,t) \leq S_{\Delta}[u_2](x,t)$$
 for all $(x,t) \in \Gamma_{\Delta}$;

21 / 35

ii) given Δ and $u \in B(\Gamma_{\Delta})$, we have for any constant C, and $(x,t) \in \Gamma_{\Delta}$. $S_{\Delta}[u+C](x,t) = S_{\Delta}[u](x,t) + C$

Convergence Analysis

We further assume

- (H1) continuous in both arguments;
- (H2) convex in the momentum variable;
- (H3) superlinear in the momentum variable, uniformly in s;
- (H4) $s \mapsto H_{\gamma}(s,\mu)$ is Lipschitz continuous

Theorem (Sub-solution property)

Let $\Delta = (\Delta x, \Delta t) \rightarrow (0,0)$ with $\Delta x/\Delta t \rightarrow 0$, then

 $u_{\Delta} \to v$

locally uniformly in $\Gamma \times [0,T)$, v is Lipschits and it is viscosity sub-solution to $(HJ\Gamma)$ with initial datum g.

The difficult point is to show the supersolution condition at the vertices.

Let $x = \gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)$$
(2)

Let $x = \gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)$$
(2)

 then we can define an optimal discrete trajectories ξ_m(s), backward in time, which stays in the arc γ for a time δ > 0

Let $x = \gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)$$
(2)

- then we can define an optimal discrete trajectories $\xi_m(s)$, backward in time, which stays in the arc γ for a time $\delta > 0$
- $\xi_m(s)$ are uniformly convergent to a trajectory ξ and, since \tilde{v} is subsolution and L_γ lower semiconituous, verify

$$\int_{t_0-\delta}^{t_0} L_{\gamma}(\xi,\dot{\xi}) dt = \tilde{v} \circ \gamma(0,t_0) - \tilde{v} \circ \gamma(\xi(t_0-\delta),t_0-\delta).$$

(see Pozza, Siconolfi '22)

Let $x = \gamma(0)$ be a vertex s.t. $\psi'(t_0) < c_x$ for some C^1 subtangent ψ to $v(x, \cdot)$ at $t_0 \in (0, T]$, and $t_m \in \mathcal{T}_{\Delta_m}$ with t_m converging t_0 , let's call $u_m := u_{\Delta_m}$ and $\tilde{v} := \lim_{m \to \infty} u_m$ then

• there is an arc $\gamma \in \mathbf{E}_x$ such that

$$u_m(x, t_m) = S_{\Delta, \gamma}[u_m \circ \gamma](\gamma^{-1}(x), t_m - \Delta_m t)$$
(2)

- then we can define an optimal discrete trajectories $\xi_m(s)$, backward in time, which stays in the arc γ for a time $\delta > 0$
- $\xi_m(s)$ are uniformly convergent to a trajectory ξ and, since \tilde{v} is subsolution and L_γ lower semiconituous, verify

$$\int_{t_0-\delta}^{t_0} L_{\gamma}(\xi,\dot{\xi}) dt = \tilde{v} \circ \gamma(0,t_0) - \tilde{v} \circ \gamma(\xi(t_0-\delta),t_0-\delta).$$

(see Pozza, Siconolfi '22)

• $\xi(t_0 - \delta) \neq 0$ (no oscillations for the definition of c_x) $\xi(t_0 - \delta) \neq 1$ (because δ can be chosen small_enough) as $\xi \in \mathbb{R}$

• if by contradiction that there is a C^1 subtangent $\varphi,$ to $u\circ\gamma$ at $(0,t_0)$ with

$$\varphi_t(0,t_0) + H_{\gamma}(0,\varphi'(0,t_0)) < 0,$$

by Perron-Ishii method, there exist a new subsoution w s.t.

$$w(0,t_0) - w(\xi(t_0-\delta),t_0-\delta) > \tilde{v} \circ \gamma(0,t_0) - \tilde{v} \circ \gamma(\xi(t_0-\delta),t_0-\delta).$$
$$= \int_{t_0-\delta}^{t_0} L_{\gamma}(\xi,\dot{\xi}) dt$$

• if by contradiction that there is a C^1 subtangent $\varphi,$ to $u\circ\gamma$ at $(0,t_0)$ with

$$\varphi_t(0,t_0) + H_{\gamma}(0,\varphi'(0,t_0)) < 0,$$

by Perron-Ishii method, there exist a new subsoution w s.t.

$$w(0,t_0) - w(\xi(t_0-\delta),t_0-\delta) > \tilde{v} \circ \gamma(0,t_0) - \tilde{v} \circ \gamma(\xi(t_0-\delta),t_0-\delta).$$
$$= \int_{t_0-\delta}^{t_0} L_{\gamma}(\xi,\dot{\xi}) dt$$

ullet this is a contradiction, since w be a subsolution , implyes

$$w(s_2, t_2) - w(s_1, t_1) \le \int_{t_1}^{t_2} L_{\gamma}(\eta, \dot{\eta}) dt$$

for any $(s_i,t_i),\ i=1,2,$ with $t_1 < t_2,$ any curve $\eta:[t_1,t_2] \to [0,1]$ joining s_1 to s_2

Main result

Theorem

Let
$$\Delta = (\Delta x, \Delta t) \rightarrow (0, 0)$$
 with $\Delta x / \Delta t \rightarrow 0$, then

 $u_{\Delta} \rightarrow v$

locally uniformly in $\Gamma \times [0,T)$, v viscosity solution to (HJ Γ) with Lipscht continuous initial datum g.

Numerical tests

Test 1: very simple network

We consider a triangle as network, $L_{\gamma_i}(x,q) = \frac{q^2}{2}$, for all i = 1, 2, 3, admissible flux limiters $c_1 = c_2 = c_3 = -5$ and as initial condition g = 0

Approximated solution at final time T = 1 with $c_1 = c_2 = c_3 = -5$, with $\Delta x = 0.05$ and $\Delta t = \frac{\Delta x}{2}$ The hyperbolic CFL condition $\max_{\gamma,s} |u'(\gamma(s))| \Delta t \leq \Delta x$ is not verified, since the Courant number $\nu = \max_{\gamma,s} |u'(\gamma(s))| \frac{\Delta t}{\Delta x} = \sqrt{10}/2 \geq 1$.

Comparison with pure SL scheme

Comparison with pure SL scheme (C., Festa, Forcadel)

Δx	E^{∞}	E^1	time	E^{∞}	E^1	time
	$3.57 \cdot 10^{-2}$					0.08s
$5.00 \cdot 10^{-2}$	$1.74 \cdot 10^{-2}$	$6.60 \cdot 10^{-3}$	0.07s	$1.19 \cdot 10^{-5}$	$1.02 \cdot 10^{-6}$	0.41s
$2.50\cdot 10^{-2}$	$8.56\cdot 10^{-3}$	$3.25\cdot10^{-3}$	0.47s	$9.79 \cdot 10^{-6}$	$2.57 \cdot 10^{-7}$	2.10s
$1.25\cdot 10^{-2}$	$4.25\cdot 10^{-3}$	$1.61 \cdot 10^{-3}$	3.54s	$4.29 \cdot 10^{-7}$	$1.15 \cdot 10^{-7}$	14.0s
$6.25\cdot10^{-3}$	$2.11\cdot 10^{-3}$	$8.15\cdot 10^{-4}$	28.3s	$3.49\cdot 10^{-8}$	$8.45\cdot10^{-9}$	99.0s

Table: Columns 2-4 shows errors, and computational time for the new scheme. Columns 5-7 shows errors and computational time for the SL scheme

Remark: In the numerical simulation, we have used a linear interpolation. This led to a truncation errors: $\frac{\Delta x^2}{\Delta x} + \Delta t$, which means that for $\Delta t = O(\Delta x)$ a first order rate of convergence is expected

Test 1: very simple network

Let us now choose cost functions depending on x, as

$$L(x,q) = \begin{cases} \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 + 10x_2^2 & \text{if } x \in \gamma_2, \\ \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 + 10x_2^2 & \text{if } x \in \gamma_3, \\ \frac{|q|^2}{2} + 5|x_1 - 0.5|^2 + 5|x_2 - 0.5|^2 & \text{if } x \in \gamma_1. \end{cases}$$

Initial condition (left) and approximated solution (center, right) at final time T = 1 with $c_1 = c_2 = c_3 = 2$, computed with $\Delta x = 6.25 \cdot 10^{-2}$ and $\Delta t = \frac{\Delta x}{2}$.

Δx	E^{∞}	E^1	time	E^{∞}	E^1	time
$1.00 \cdot 10^{-1}$	$1.93 \cdot 10^{-1}$	$1.49 \cdot 10^{-1}$	0.03s	$1.93 \cdot 10^{-1}$	$1.34 \cdot 10^{-1}$	0.28s
$5.00 \cdot 10^{-2}$	$1.07 \cdot 10^{-1}$	$7.57 \cdot 10^{-2}$	0.16s	$1.04 \cdot 10^{-1}$	$6.94 \cdot 10^{-2}$	1.19s
$2.50\cdot 10^{-2}$	$5.77 \cdot 10^{-2}$	$7.67 \cdot 10^{-2}$	0.70s	$5.34 \cdot 10^{-2}$	$3.43 \cdot 10^{-2}$	7.66s
$1.25 \cdot 10^{-2}$	$2.90 \cdot 10^{-2}$	$1.73 \cdot 10^{-2}$	5.26s	$2.55 \cdot 10^{-2}$	$1.69 \cdot 10^{-2}$	56.3s
$6.25\cdot10^{-3}$	$1.42\cdot 10^{-2}$	$7.85\cdot10^{-3}$	40.1s	$1.17\cdot 10^{-2}$	$7.46\cdot10^{-3}$	444s

 L^{∞} and L^{1} errors computed $\Delta t = \Delta x/2$, T = 1. Columns 2-4 show errors and computational time for the new scheme. Columns 5-7 show errors and computational time for the SL

For any $\gamma \in \mathbf{E}^+$, let $a_{\gamma}(s) : [0,1] \to \mathbb{R}^-$ be a Lipschitz function, and consider the following Hamiltonians:

 $H_{\gamma}(s,p) = a_{\gamma}(s)|p|.$

(Convergence analysis can be generalised for this case)

31 / 35

We first set all the speeds $a_\gamma=1$ and all flux limiters equal to 0. In this case, the flux limiter has no influence in the evolution, then an initial front given by the level set -0.2 would propagate in all the network in a time $T^*=1+1.2\sqrt{2}\simeq 2.6970...$

Left: v_{Δ} ai time T = 1.5. Right: level set 0.2 at time T = 1.5 (blue line).

We first set all the speeds $a_\gamma=1$ and all flux limiters equal to 0. In this case, the flux limiter has no influence in the evolution, then an initial front given by the level set -0.2 would propagate in all the network in a time $T^*=1+1.2\sqrt{2}\simeq 2.6970...$

(Loading...) (Loading...)

Left: v_{Δ} ai time T = 1.5. Right: level set 0.2 at time T = 1.5 (blue line).

Left: v_{Δ} at time T = 2.69.Right: level set 0.2 at time T = 2.67 (blue line).

References

F. Camilli, A.Festa, D. Schieborn

Shortest paths and Eikonal equations on a graph. Appl. Numer. Math. 73 33-47 (2013).

C. Imbert, R. Monneau.

Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks. Annales Scientifiques de l'ENS, 50 (2), 357–448 (2017).

A.Festa, N. Forcadel, E. Carlini

A semi-Lagrangian scheme for Hamilton-Jacobi equations on networks and application to traffic flow models.

arXiv preprint, arXiv:1804.09429, (2018).

M. Pozza, and A. Siconolfi,

Lax–Oleinik formula on networks arXiv:2109.13587.

A. Siconolfi,

Time-dependent Hamilton-Jacobi equations on networks

J. Math.PuresAppl.163(2022)702-738

イロン 不得 とうほう イロン 二日