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Conclusions

Context

• The numerical modelling of blood flow in cardiovascular networks provide satisfactory results only if the
mechanical behavior of vessels is correctly accounted for[1]. In particular, an accurate viscoelastic characterization
of the vessel wall is crucial.

• In previous works, we have proposed a Standard Linear Solid model (SLSM) to describe the vessel wall
rheology[2,3], enabling to simulate the most significant aspects related to the viscoelasticity of the vessel wall: the
exponential decay in time of the stress and the creep phenomena. This allows to account for damping effects
related to the partial dissipation of energy.

Motivation

• Although the viscoelasticity is usually neglected in the implementation of internal and external boundary
conditions, in favor of a local elastic approach, we believe that the inclusion of the viscoelastic contribution at
boundaries is mandatory for a correct hemodynamic analysis[4].

• This work presents a methodology for modelling cardiovascular networks accounting for the viscoelastic behavior
of blood vessels also in the treatment of the inflow/outflow boundaries and at the junctions.
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Mathematical model

The mathematical model for the blood flow in the single vessel is the augmented fluid-
structure interaction (a-FSI) system[2]:

𝜕𝑡𝐴 + 𝜕𝑥 𝐴𝑢 = 0

𝜕𝑡 𝐴𝑢 + 𝜕𝑥 𝐴𝑢2 +
𝐴
𝜌
𝜕𝑥𝑝 =

𝑓
𝜌

𝜕𝑡𝑝 + 𝑑 𝜕𝑥 𝐴𝑢 = 𝑆

𝜕𝑡𝐴0 = 0
𝜕𝑡𝐸0 = 0

𝜕𝑡𝑝𝑒𝑥𝑡 = 0

Viscoelastic tube law

Closing equations for 
longitudinal discontinuities
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Eq. continuity

Eq. momentum
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Viscoelastic tube law

The SLSM model is defined by three parameters:

• The instantaneous Young modulus, 𝑬𝟎 𝒙 ;

• The asymptotic Young modulus, 𝑬∞ 𝒙 ;

• The relaxation time, 𝝉𝒓 𝒙 .

The instantaneous behaviour is governed by three parameters K, m and n.

𝜕𝑡𝑝 +
𝐾

𝐴
𝑚 𝛼𝑚 − 𝑛 𝛼𝑛 𝜕𝑥 𝐴𝑢 =

1

𝜏𝑟

𝐸∞
𝐸0

𝐾 𝛼𝑚 − 𝛼𝑛 − 𝑝 − 𝑝𝑒𝑥𝑡
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𝑑 𝑆



In the physiological range of the parameters, the a-FSI system is (not strictly)
hyperbolic and can be written in quasi-linear form and is characterized by:

• 4 linearly degenerated fields, associated with contact discontinuity waves and
Riemann Invariants:

• 2 genuinely non-linear fields, associated with either shocks or rarefactions and
Riemann Invariants:

Riemann Invariants

Γ1
𝐿𝐷 = 𝐴𝑢, Γ2

𝐿𝐷 = 𝑝 +
1

2
𝜌𝑢2

Γ1,2 = 𝑢 ±න
𝑐 𝐴

𝐴
d𝐴 , Γ3 = 𝑝 −න𝑑 𝐴 d𝐴
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Time discretization A stiffly accurate IMEX-SSP(3,3,2) scheme is used. The scheme is asymptotic 
preserving (AP) and asymptotic accurate in the zero relaxation limit[2,5,6].
• An L-stable diagonally implicit Runge-Kutta scheme is used for the stiff part
• An explicit SSP scheme is provided for non-stiff part
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Numerical fluxes and non conservative jumps are obtained applying the DOT solver[7]
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Numerical scheme
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𝑭 and 𝑫 are the vectors of numerical fluxes and non-conservative jumps, evaluated at the cell
boundaries though the path-conservative Dumbser-Osher-Toro (DOT) Riemann solver [7].
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Boundaries of the network
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Boundary conditions
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BAV LAV

BMV LMV

Cardiac contraction model

d𝑣

d𝑡
= 𝑞𝑖𝑛 𝑡 − 𝑞𝑜𝑢𝑡 𝑡
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𝐸 𝑡 =
𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛

max 𝐻1 𝑡 𝐻2 𝑡
𝐻1 𝑡 𝐻2 𝑡 + E𝑚𝑖𝑛
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Cardiac contraction model

Equations that govern the cardiac contraction model are integrated in time following the
IMEX-RK scheme, treating the equations explicitly since they do not contain any stiff term.

𝑞𝑣
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𝜁(𝑡) and 𝑣(𝑡) are integrated following the same approach.



The numerical modelling of the internal boundaries is derived from the solution of an extended
Riemann problem (RP), here called the Junction Riemann problem (JRP).

We remember that for a classic 1D RP :

• the RP – involving only a continuity equation and a momentum equation – is characterised by a
solution constituted by one intermediate constant state (the star region) separated from the initially
imposed constant states by non-linear waves (shock waves or rarefactions).

• Adding a further equations to account for mechanical discontinuities results in an enrichment of the
eigenstructure with null eigenvalues and stationary contact waves become part of the solution.

• restricting the analysis to sub-critical flows, the non-linear waves are directed from the centre to the
periphery, the intermediate constant state become two, separated from each other by a new
stationary contact discontinuity wave.

Junctions
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The extension to the JRP follows:

• Conceiving the position of the initial
discontinuity as a junction section among
branches, the RP partial solution related to
each branch consists of an initial state
separated from the star region of the same
branch by a non-linear wave, while the
intermediate states of the branching vessels,
adjacent to the node, are separated from each
other by contact discontinuities.

Junctions
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The unknowns of the JRP are the flow rate, 𝑞𝑗
∗, the cross-sectional area, 𝐴𝑗

∗, and pressure,
𝑝𝑗
∗, of the star region for each branching vessel.

Junctions

σ𝑖=1
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∗ 𝑐 𝐴

𝐴
d𝐴 = 0 𝑖 = 1,… ,𝑁

𝑝𝑖
∗ − 𝑝𝑖

1𝐷 + 
𝐴𝑖
1𝐷

𝐴𝑖
∗

𝑑 𝐴 d𝐴 = 0 𝑖 = 1,… ,𝑁

Mass

Total pressure

ConclusionsIntroduction Mathematical model Numerical scheme Validation and application



ConclusionsIntroduction Mathematical model Numerical scheme Validation and application

Second order accuracy at boundaries

At boundaries, the solution obtained from the computation of the boundary condition (i.e.,
JRP, inlet, outlets) is used to compensate for the missing cell average values in the slope
computation:

∆𝑸1
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= minmod(𝐐1
𝑘
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(𝑘)
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𝑘
− 𝐐𝑛𝑐−1

𝑘
, 𝐐𝐵𝐶
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𝑘
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Validation tests

2-vessel artery 2-vessel vein



Validation tests
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ADAN56 [4,5]
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Aortic arch
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ADAN56
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Thank you for your attention.
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