A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes

Walter Boscheri

walter.boscheri@unife.it

University of Ferrara (Italy) - Department of Mathematics and Computer Science -

22nd February 2023 - PRIN 2017 Final Workshop

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
- Asymptotic analysis of the scheme
- 5 Second order extension in space and time
- 6 Numerical results

7 Conclusions

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
- 4 Asymptotic analysis of the scheme
- 5 Second order extension in space and time
- 6 Numerical results
- 7 Conclusions

Lagrangian methods

$$\frac{D}{Dt}() = \frac{\partial}{\partial t}() + \overline{\mathbf{v}} \,\nabla()$$

J. Von Neumann, R. D. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. *J. Applied Physics* 21 (1950) 232-237.

Advantages

- availability of trajectory information;
- less numerical diffusion;
- material interfaces are precisely located and identified.

Lagrangian methods

$$rac{D}{Dt}() = rac{\partial}{\partial t}() + \overline{\mathbf{v}} \,
abla()$$

J. Von Neumann, R. D. Richtmyer. A method for the numerical calculation of hydrodynamic shocks. *J. Applied Physics* 21 (1950) 232-237.

Advantages

- availability of trajectory information;
- less numerical diffusion;
- material interfaces are precisely located and identified.

Disadvantages

- high computational cost;
- mesh distortion.

Lagrangian methods (brief overview)

Cell-centered finite volume schemes for hydrodynamics

C.D. Munz. On Godunov-type schemes for Lagrangian gas dynamics. *SIAM Journal on Numerical Analysis* 31 (1994) 17-42.

B. Després, C. Mazeran. Symmetrization of Lagrangian gas dynamic in dimension two and multimdimensional solvers. *C.R. Mecanique* 331 (2003) 475-480.

B. Després, C. Mazeran. Lagrangian gas dynamics in two dimensions and Lagrangian systems. *ARMA* 178 (2005) 327-372.

 P.H. Maire. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes.
 J. Comput. Phys. 228 (2009) 2391-2425.

P.-H. Maire, R. Abgrall, J. Breil, J. Ovadia. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. *SIAM SISC* 29 (2007) 1781-1824.

Lagrangian methods (brief overview)

Finite element schemes for solid mechanics

- D. P. Flanagan, T. Belytschko. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. *IJNME* 17 (1981) 679-706.
- G.L. Goudreau, J.O. Hallquist. Recent developments in large-scale finite element Lagrangian hydrocode technology. *CMAME* 33 (1982) 725-757.

G. Scovazzi, B. Carnes, X. Zeng, S. Rossi. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. *IJNME* 106 (2016) 799-839.

Lagrangian methods (brief overview)

Finite volume schemes for solid mechanics

- J.A. Trangenstein and P. Colella. A higher-order Godunov method for modeling finite deformation in elastic-plastic solids. *Communications on Pure and Applied Mathematics* 44 (1991) 41-100.
- G. Kluth, B. Després. Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. *JCP* 229 (2010) 9092-9118.
- J. Bonet, A. J. Gil, C. Hean Lee, M. Aguirre, R. Ortigosa. A first order hyperbolic framework for large strain computational solid dynamics. part I: Total Lagrangian isothermal elasticity. *CMAME* 283 (2015) 689-732.
- A. J. Gil, C. Hean Lee, J. Bonet, and R. Ortigosa. A first order hyperbolic framework for large strain computational solid dynamics. part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. *CMAME* 300 (2016) 146-181.

Outline

Introduction and motivation

2 The GPR model in Lagrangian formulation

3 Cell-centered finite volume scheme on unstructured grids

4 Asymptotic analysis of the scheme

5 Second order extension in space and time

6 Numerical results

7 Conclusions

Updated Lagrangian framework

Lagrange-Euler mapping

Figure: Lagrange-Euler mapping Φ relating a material Lagrangian point X at t = 0 and a spatial Eulerian one x at t > 0.

 $\begin{array}{ll} \mathcal{B} \longrightarrow \beta(t) & \text{Computational domain} \\ \boldsymbol{X} \longmapsto \boldsymbol{x} = \boldsymbol{\Phi}(\boldsymbol{X},t) & \text{Lagrange-Euler mapping} \\ \mathbb{F}(\boldsymbol{X},t) = \nabla_{\boldsymbol{X}} \boldsymbol{\Phi}(\boldsymbol{X},t) & \text{Deformation gradient} \\ J(\boldsymbol{X},t) = \det\left(\mathbb{F}(\boldsymbol{X},t)\right) \text{ s.t. } J(\boldsymbol{X},t=0) = 1 & \text{Determinant of } \mathbb{F} \end{array}$

Updated Lagrangian framework

Measures of deformation

Decomposition of the total deformation gradient: $\mathbb{F} = \mathbb{F}_e \mathbb{F}_p$

Effective elastic distortion: $\mathbb{A}_e = \mathbb{F}_e^{-1}$

Infinitesimal frame \mathbb{A}_e (local basis triad) that characterizes deformation and orientation of the material particles.

Compatibility condition: $\nabla\times\mathbb{A}_{e}=0$

Metric tensor: $\mathbb{G}_{e} = \mathbb{A}_{e}^{\mathsf{T}} \mathbb{A}_{e}$

Deviatoric part: $\mathring{\mathbb{G}}_e = \mathbb{G}_e - \frac{1}{3} tr(\mathbb{G}_e)\mathbb{I}$

Nonlinear (quadratic) compatibility condition.

The Godunov-Peshkov-Romenski (GPR) model

(I. Peshkvo and E. Romenski. Cont. Mech. Therm. 2016)

Physical variables: $\mathbf{Q} := \{\omega, \mathbf{v}, E, \mathbf{J}, \mathbb{G}_e\}$

$$\rho \frac{\mathrm{d}\omega}{\mathrm{d}t} - \nabla \cdot \mathbf{v} = \mathbf{0},\tag{1a}$$

$$\rho \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} - \nabla \cdot \mathbb{T} = \mathbf{0},\tag{1b}$$

$$\rho \frac{\mathrm{d}\boldsymbol{E}}{\mathrm{d}\,\boldsymbol{t}} - \nabla \cdot (\mathbb{T}\boldsymbol{v}) + \nabla \cdot \boldsymbol{q} = \boldsymbol{0}, \tag{1c}$$

$$\rho \frac{\mathrm{d}\mathbf{J}}{\mathrm{d}\,t} + \nabla\theta = -\frac{\rho\mathbf{H}}{\Psi},\tag{1d}$$

$$\frac{\mathrm{d}\mathbb{G}_e}{\mathrm{d}\,t} + \mathbb{G}_e \nabla \mathbf{v} + \nabla \mathbf{v}^{\mathsf{T}} \mathbb{G}_e = \frac{2}{\rho \Theta} \sigma, \tag{1e}$$

Notation

ho	mass density	$\omega = ho^{-1}$	specific volume
$\mathbf{v} = (u, v, w)$	velocity vector	\mathbb{T}	Cauchy stress tensor
$E(ho, p, \mathbf{v}, \mathbb{G}_e)$	total energy	J	thermal impulse

Energy and Cauchy stress

Total energy: $E = E_h(\rho, p) + E_e(\mathbb{G}_e) + E_{th}(\mathbf{J}) + E_k(\mathbf{v})$

$$E_h = \varepsilon(\rho, p) \qquad E_e = \frac{c_{\mathrm{sh}}^2}{4} \| \mathring{\mathbb{G}}_e \|^2 \qquad E_{th} = \frac{1}{2} \alpha^2 \| \mathbf{J} \|^2 \qquad E_k = \frac{1}{2} \| \mathbf{v} \|^2$$

Cauchy stress tensor: $\mathbb{T} = -p\mathbb{I} + \sigma$

Pressure (hydrodynamic energy): p

Tangential stress:

$$\sigma = -2
ho \mathbb{G}_e rac{\partial E}{\partial \mathbb{G}_e} = -
ho c_{\mathrm{sh}}^2 \mathbb{G}_e \mathring{\mathbb{G}}_e$$

Remark. The spherical part of σ for our choice of the elastic energy is not zero but scales as $\sim \|\mathring{\mathbb{G}}_e\|^2$

Equation of state (EOS) for E_h

• ideal gas EOS

$$arepsilon(
ho, oldsymbol{p}) = rac{oldsymbol{p}}{
ho(\gamma-1)}, \qquad heta = rac{arepsilon}{oldsymbol{c}_{oldsymbol{v}}}, \qquad oldsymbol{c}_0^2 = rac{\gamma oldsymbol{p}}{
ho},$$

• Mie-Grüneisen EOS

$$\varepsilon(\rho, p) = rac{p -
ho_0 c_0^2 f(J)}{
ho_0 \Gamma_0}, \qquad f(J) = rac{(J-1)(J - rac{1}{2}\Gamma_0(J-1))}{(J - s(J-1))^2},$$

with $J = \frac{\rho}{\rho_0}$.

• Neo-Hookean hyperelastic EOS

$$arepsilon(
ho, p) = rac{G}{4
ho_0}\left((J-1)^2 + (\log(J))^2
ight), \qquad p = -rac{G}{2}\left(J-1 + rac{\log(J)}{J}
ight),$$

where $G = \rho_0 c_{\rm sh}^2$ is the shear modulus.

Closure for inelastic deformations and fluid flows

Relaxation function in the source term for \mathbb{G}_e

$$\Theta = \tau_1 \frac{c_{\rm sh}^2}{3} |\mathbb{G}_e|^{-5/6}$$

 $|\mathbb{G}_e| = \det(\mathbb{G}_e)$ and τ_1 is the strain relaxation time.

$$\begin{array}{lll} \text{fluids} & \rightarrow & \tau_1 = \frac{6\mu}{\rho_0 c_s^2} & \mu \text{: dynamic viscosity coefficient} \\ \text{solids} & \rightarrow & \tau_1 = \tau_1 = \tau_{10} \left(\frac{\sigma_Y}{\sigma}\right)^n & \tau_{10}, n \text{: material parameters, } \sigma_Y \text{: Yield stress} \\ & \sigma = \sqrt{\frac{3}{2} \text{tr}(\mathring{\sigma}^2)}, & \mathring{\sigma} = \boldsymbol{\sigma} - \frac{1}{3} \text{tr}(\boldsymbol{\sigma}) \mathbb{I} \end{array}$$

Heat conduction

Relaxation function in the source term for ${\boldsymbol{\mathsf{J}}}$

$$\Psi = \alpha^2 \tau_{20} \tau_2, \qquad \tau_{20} = \frac{\rho}{\rho_0} \frac{\theta_0}{\theta},$$

Consistency with second law of thermodynamics:

$$\mathbf{q} = \theta \mathbf{H} = \alpha^2 \theta \mathbf{J}, \qquad \mathbf{H} := \frac{\partial E}{\partial \mathbf{J}} = \alpha^2 \mathbf{J}.$$

Thermal perturbation propagation speed: $c_{\rm h}^2 = \frac{\alpha^2}{\rho_0^2} \frac{\theta}{c_v}$

Effective heat conductivity: $\kappa = \tau_2 \alpha^2 \frac{\theta_0}{\rho_0} \Rightarrow$ Fourier law: $\mathbf{q} = -\kappa \nabla \theta$

Notation

- au_2 thermal relaxation time
- θ temperature
- α $\;$ parameter related to the thermal propagation speed

Outline

- Introduction and motivation
- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
 - 4 Asymptotic analysis of the scheme
- 5 Second order extension in space and time
- 6 Numerical results
- 7 Conclusions

Computational mesh and data representation

Unstructured grid composed of triangles or tetrahedra

Fully discrete finite volume scheme

Physical balance laws

IMplicit-EXplicit time discretization

$$\omega_i^{n+1} = \omega_i^n + \frac{\Delta t}{m_i} \sum_{r \in \mathcal{R}_i} \tilde{\mathbf{v}}_r^* \cdot \frac{1}{6} \left(\mathbf{c}_{ri}^n + 4\mathbf{c}_{ri}^{n+1/2} + \mathbf{c}_{ri}^{n+1} \right),$$
(2a)

$$\mathbf{v}_i^{n+1} = \mathbf{v}_i^n + \frac{\Delta t}{m_i} \sum_{r \in \mathcal{R}_i} \tilde{\mathbf{f}}_{ri}^*, \tag{2b}$$

$$E_i^{n+1} = E_i^n + \frac{\Delta t}{m_i} \left[\sum_{r \in \mathcal{R}_i} \tilde{\mathbf{f}}_{ri}^* \cdot \tilde{\mathbf{v}}_r^* + \sum_{f \in \mathcal{F}_i} \widehat{\mathbf{q}_{fi} \cdot \mathbf{n}_{fi}}^n s_f^n \right] = 0, \qquad (2c)$$

$$\mathbf{J}_{i}^{n+1} = \mathbf{J}_{i}^{n} - \frac{\Delta t}{m_{i}} \sum_{f \in \mathcal{F}_{i}} \widehat{\theta_{fi} \mathbb{I} \cdot \mathbf{n}_{fi}}^{n} s_{f}^{n} - \Delta t \frac{\mathbf{H}_{i}^{n+1}}{\Psi_{i}^{n+1}},$$
(2d)

$$\mathbb{G}_{e_i}^{n+1} = \mathbb{G}_{e_i}^n - \Delta t \left(\mathbb{G}_{e_i}^n \mathbb{L}_i (\tilde{\mathbf{v}}^*) + \mathbb{L}_i (\tilde{\mathbf{v}}^*)^{\mathsf{T}} \mathbb{G}_{e_i}^n \right) + \Delta t \frac{2\sigma_i^{n+1}}{\rho \Theta_i^{n+1}},$$
(2e)

Trajectory equation

$$\mathbf{x}_r^{n+1} = \mathbf{x}_r^n + \Delta t \, \tilde{\mathbf{v}}_r^*. \tag{3}$$

Walter Boscheri

Implicit-Explicit Lagrangian schemes for continuum mechanics

11 / 28

Explicit numerical fluxes

Numerical fluxes for the heat conduction

$$\widehat{\mathbf{q}_{fi} \cdot \mathbf{n}_{fi}} = \frac{1}{2} \left((\alpha^2 \theta \mathbf{J})_{fi} + (\alpha^2 \theta \mathbf{J})_{fj} \right) \cdot \mathbf{n}_{fi} - \frac{1}{2} |\lambda_f| \left(E_{fj} - E_{fi} \right),$$

$$\widehat{\theta_{fi} \mathbb{I} \cdot \mathbf{n}_{fi}} = \frac{1}{2} \left((\theta \mathbb{I})_{fi} + (\theta \mathbb{I})_{fj} \right) \cdot \mathbf{n}_{fi} - \frac{1}{2} |\lambda_f| \left(\mathbf{J}_{fj} - \mathbf{J}_{fi} \right),$$

with
$$\lambda_f = \max(a_i, a_j)$$
 and $a_i = \sqrt{c_0^2 + rac{4}{3}c_{
m sh}^2 + c_{
m h}^2} igg|_i$.

Discrete velocity gradient for the \mathbb{G}_{e_i} equation

$$\mathbb{L}_i(\mathbf{v}) = \frac{1}{|\mathcal{T}_i|} \sum_{r \in \mathcal{R}(i)} \mathbf{v}_r \otimes \mathbf{c}_{ri},$$

Nonlinear nodal solver

Subcell force balance (P.H. Maire, JCP 2009)

$$\mathbb{M}_r \tilde{\mathbf{v}}_r^* = \sum_{i \in \mathcal{T}_r} \mathbb{M}_{ir} \mathbf{v}_i^n - \mathbb{T}_i^* \mathbf{c}_{ri}^n$$

with the discrete subcell matrix \mathbb{M}_{ir} and nodal matrix \mathbb{M}_r given by

$$\mathbb{M}_{ir} = \sum_{f \in \mathcal{F}_{ri}} z_i^n \, s_f^n \, \mathbf{n}_f^n \otimes \mathbf{n}_f^n, \qquad \mathbb{M}_r = \sum_{i \in \mathcal{T}_r} \mathbb{M}_{ir}.$$

Subcell force definition: Implicit discretization for σ :

$$\begin{split} \tilde{\mathbf{f}}_{ri}^* &= \mathbf{c}_{ri}^n \mathbb{T}_i^* + \mathbb{M}_{ir} (\tilde{\mathbf{v}}_r^* - \mathbf{v}_i^n) \\ \boldsymbol{\sigma}_i^{n+1} &= -\rho_i^{n+1} c_{\mathrm{sh}}^2 \mathbb{G}_{e_i}^{n+1} \mathring{\mathbb{G}}_{e_i}^{n+1} \end{split}$$

NB: the nodal solver must be coupled with the trajectory equation, the GCL and the equation for \mathbb{G}_{e_i} , in order to obtain \mathbf{x}_r^{n+1} , ρ_i^{n+1} and $\mathbb{G}_{e_i}^{n+1}$.

↓ strongly nonlinear system

Nonlinear nodal solver

Picard iterative solver for $l = 1, \ldots, \mathcal{L}$

$$\begin{split} \tilde{\mathbf{v}}_{r}^{l+1,n+1} &= \left(\sum_{i \in \mathcal{T}_{r}} \mathbb{M}_{ir} \mathbf{v}_{i}^{n} - \mathbb{T}_{i}^{l,n+1} \mathbf{c}_{ri}^{n} \right) \mathbb{M}_{r}^{-1}, \\ \mathbf{x}_{r}^{l+1,n+1} &= \mathbf{x}_{r}^{n} + \Delta t \, \tilde{\mathbf{v}}_{r}^{l+1,n+1}, \\ \rho_{i}^{l+1,n+1} &= \frac{m_{i}}{|\mathcal{T}_{i}|^{l+1,n+1}}, \\ \mathbb{G}_{e_{i}}^{l+1,n+1} &= \mathbb{G}_{e_{i}}^{n} - \Delta t \left(\mathbb{G}_{e_{i}}^{n} \mathbb{L}_{i} (\tilde{\mathbf{v}}^{l+1,n+1}) + \mathbb{L}_{i} (\tilde{\mathbf{v}}^{l+1,n+1})^{\mathsf{T}} \mathbb{G}_{e_{i}}^{n} \right) + \Delta t \frac{2\sigma_{i}^{l+1,n+1}}{\rho^{l+1,n+1}}, \\ \sigma_{i}^{l+1,n+1} &= -\rho_{i}^{l+1,n+1} c_{\mathrm{sh}}^{2} \mathbb{G}_{e_{i}}^{l+1,n+1} \, \tilde{\mathbb{G}}_{e_{i}}^{l+1,n+1}. \end{split}$$

Fully implicit discretization for $\mathbb{G}_{e_i}^{l+1,n+1}$ only! (Exponential integrator ^(W. Boscheri et al., JCP 2022))

Nonlinear nodal solver

Stopping criteria

 $\bullet~$ The material is an ideal gas $\rightarrow~$ hydrodynamics limit

$$\epsilon_h^{l+1} := \left| \mathbb{G}_{e_i}^{l+1,n+1} - \left(\frac{\rho^{l+1,n+1}}{\rho_0} \right)^{2/3} \mathbb{I} \right| \le \delta,$$

• The material is a purely elastic solid \rightarrow ideal elasticity limit

$$\epsilon_{e}^{l+1} := \left| \mathbb{G}_{e_{i}}^{l+1,n+1} - \mathbb{G}_{i,*}^{l+1,n+1} \right| \le \delta,$$

where $\mathbb{G}_{i,*}^{l+1,n+1}$ is the solution of the homogeneous equation for \mathbb{G}_{e_i} .

• Convergence is achieved between two consecutive iterations for any of the following residuals (viscous flows and viscoplastic solids):

$$\left|\epsilon_{h}^{\prime+1}-\epsilon_{h}^{\prime}\right|\leq\delta, \qquad \left|\epsilon_{e}^{\prime+1}-\epsilon_{e}^{\prime}\right|\leq\delta.$$

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids

Asymptotic analysis of the scheme

- 5 Second order extension in space and time
- 6 Numerical results

7 Conclusions

Asymptotic preserving properties

Application of the Chapman-Enskog expansion

$$\phi = \phi_{(0)} + \varepsilon \phi_{(1)} + \varepsilon^2 \phi_{(2)} + \ldots + \mathcal{O}(\varepsilon^k)$$

up to the first order in ε_2 and ε_1 to \mathbf{J}_i and \mathbb{G}_{e_i} yields

$$\begin{split} \mathbf{J}_{i(0)}^{n+1} + \varepsilon_{2} \mathbf{J}_{i(1)}^{n+1} - \mathbf{J}_{i(0)}^{n} - \varepsilon_{2} \mathbf{J}_{i(1)}^{n} &= -\frac{\Delta t}{m_{i}} \sum_{f \in \mathcal{F}_{i}} \widehat{\theta_{i}(\mathbf{r} \cdot \mathbf{n}_{f})} s_{f}^{n} - \frac{1}{\varepsilon_{2}} \frac{\theta_{i}^{n}}{\theta_{0}} \frac{\rho_{0}}{\rho_{i}^{n+1}} \left(\mathbf{J}_{i(0)}^{n+1} + \varepsilon_{2} \mathbf{J}_{i(1)}^{n+1} \right) + \mathcal{O}(\varepsilon_{2}^{2}), \\ \mathbb{G}_{e_{i}(0)}^{n+1} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n+1} - \mathbb{G}_{e_{i}(0)}^{n} - \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n} &= -\Delta t \left[\left(\mathbb{G}_{e_{i}(0)}^{n} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n} \right) \mathbb{L}_{i}(\mathbf{\tilde{v}}^{*}) - \mathbb{L}_{i}(\mathbf{\tilde{v}}^{*})^{\mathsf{T}} \left(\mathbb{G}_{e_{i}(0)}^{n} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n+1} \right) \right] \\ &+ \frac{6}{\varepsilon_{1}} \left| \mathbb{G}_{e_{i}(0)}^{n+1} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n+1} \right|^{5/6} \left(\mathbb{G}_{e_{i}(0)}^{n+1} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n+1} \right) \left(\mathbb{G}_{e_{i}(0)}^{n+1} + \varepsilon_{1} \mathbb{G}_{e_{i}(1)}^{n+1} \right) \\ &+ \mathcal{O}(\varepsilon_{1}^{2}). \end{split}$$

Asymptotic analysis

Heat flux limit of the at 1-st order \rightarrow di Viscous stress tensor limit at 0-th order \rightarrow di Viscous stress tensor limit at 1-st order \rightarrow di

- \rightarrow discrete Fourier law
- \rightarrow $\,$ discrete viscous stresses vanish
 - discrete viscous stress of CNS

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
 - 4 Asymptotic analysis of the scheme
- 5 Second order extension in space and time
- 6 Numerical results

7 Conclusions

Space: TVD piecewise linear reconstruction

Reconstruction polynomial: $\mathbf{w}_{i}^{n}(\mathbf{x}^{n}) = \sum_{l=1}^{\mathcal{M}} \psi_{l}(\boldsymbol{\xi}) \, \widehat{\mathbf{w}}_{l,i}^{n} \, (modal \text{ basis functions})$

Reconstruction stencil:
$$S_i = \bigcup_{j=1}^{n_e} T^n_{m(j)}$$
 with $n_e = d \cdot M$

Conservation principle:
$$\frac{1}{|\mathcal{T}_j^n|} \int_{\mathcal{T}_j^n} \psi_l(\boldsymbol{\xi}) \widehat{\boldsymbol{\mathsf{w}}}_{l,i}^c \, \mathrm{d} \mathbf{x} = \mathbf{Q}_j^n, \qquad \forall \mathcal{T}_j^n \in \mathcal{S}_i$$

Minmod limiter: $\widehat{\mathbf{w}}_{l,i}^n = b_i \, \widehat{\mathbf{w}}_{l,i}^c$ with $b_i = \min_{r \in \mathcal{R}_i} b_{i,r}$

$$b_{i,r} = \begin{cases} \min\left(1, \frac{\mathbf{Q}_i^{n, \max} - \mathbf{Q}_i^n}{\mathbf{w}_i^n(\mathbf{x}_r^n) - \mathbf{Q}_i^n}\right) & \text{if } \mathbf{w}_i^n(\mathbf{x}_r^n) > \mathbf{Q}_i^n \\ \min\left(1, \frac{\mathbf{Q}_i^{n, \min} - \mathbf{Q}_i^n}{\mathbf{w}_i^n(\mathbf{x}_r^n) - \mathbf{Q}_i^n}\right) & \text{if } \mathbf{w}_i^n(\mathbf{x}_r^n) < \mathbf{Q}_i^n \\ 1 & \text{if } \mathbf{w}_i^n(\mathbf{x}_r^n) = \mathbf{Q}_i^n \end{cases}$$

Time: IMplicit-EXplicit Runge-Kutta time stepping

Splitting of the PDE:
$$\frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}t} = \mathcal{L}_{ex}(t,\mathbf{Q},\nabla\mathbf{Q}) + \mathcal{L}_{im}(t,\mathbf{Q})$$
$$\mathcal{L}_{ex}(t,\mathbf{Q},\nabla\mathbf{Q}) = \begin{bmatrix} \rho^{-1}\nabla\cdot\mathbf{v}\\ \rho^{-1}\nabla\cdot\mathbf{T}\\ \rho^{-1}\nabla\cdot(\mathbf{T}\mathbf{v}+\mathbf{q})\\ \rho^{-1}\nabla\cdot\mathbf{T}\mathbb{I}\\ -(\mathbb{G}_e\nabla\mathbf{v}+\nabla\mathbf{v}^{\mathsf{T}}\mathbb{G}_e) \end{bmatrix}, \quad \mathcal{L}_{im}(t,\mathbf{Q}) = \begin{bmatrix} 0\\ 0\\ 0\\ -\mathbf{H}/\Psi\\ 2\sigma/(\rho\Theta) \end{bmatrix}$$

Second order IMEX ARS(2,2,2) with $\beta = 1 - \sqrt{2}/2$

$$\frac{\mathbf{Q}^{(1)} - \mathbf{Q}^{n}}{\Delta t} = \beta \mathcal{L}_{ex}(t^{n}, \mathbf{Q}^{n}, \nabla \mathbf{Q}^{n}) + \beta \mathcal{L}_{im}(t^{(1)}, \mathbf{Q}^{(1)})
\frac{\mathbf{Q}^{n+1} - \mathbf{Q}^{n}}{\Delta t} = (\beta - 1) \mathcal{L}_{ex}(t^{n}, \mathbf{Q}^{n}, \nabla \mathbf{Q}^{n}) + (2 - \beta) \mathcal{L}_{ex}(t^{(1)}, \mathbf{Q}^{(1)}, \nabla \mathbf{Q}^{(1)})
+ \beta \mathcal{L}_{im}(\mathbf{Q}^{(1)}) + (1 - \beta) \mathcal{L}_{im}(t^{(1)}, \mathbf{Q}^{(1)}) + \beta \mathcal{L}_{im}(t^{n+1}, \mathbf{Q}^{n+1})$$

Remark. The same discretization applies to the trajectory equation: $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{v}$

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
- 4 Asymptotic analysis of the scheme
- 5 Second order extension in space and time

Numerical results

7 Conclusions

Convergence studies (hydrodynamics limit: $\tau_1 = 10^{-14}$)

2D LGPR *O* 1 ($\tau_1 = 10^{-14}$)

$h(\Omega(t_f))$	$(\omega)_{L_2}$	$O(1/\rho)$	u_{L_2}	O(u)	E_{L_2}	O(E)
3.26E-01	5.405E-02	-	1.547E-01	-	2.579E-01	-
2.47E-01	4.164E-02	0.96	1.219E-01	0.88	2.044E-01	0.86
1.63E-01	3.053E-02	0.74	8.866E-02	0.76	1.471E-01	0.78
1.28E-01	2.286E-02	1.20	7.041E-02	0.96	1.164E-01	0.97

2D LGPR *O* 2 ($\tau_1 = 10^{-14}$)

$h(\Omega(t_f))$	$(\omega)_{L_2}$	$O(1/\rho)$	u_{L_2}	O(u)	E_{L_2}	O(E)
3.26E-01	4.996E-02	-	4.895E-02	-	9.281E-02	-
2.47E-01	3.312E-02	1.49	3.020E-02	1.76	5.509E-02	1.90
1.63E-01	1.913E-02	1.32	1.534E-02	1.63	2.858E-02	1.58
1.28E-01	1.327E-02	1.51	9.153E-03	2.13	1.770E-02	1.98

3D LGPR *O* 1 ($\tau_1 = 10^{-14}$)

$h(\Omega(t_f))$	$(\omega)_{L_2}$	$O(1/\rho)$	u_{L_2}	O(u)	E_{L_2}	O(E)
5.29E-01	2.389E-01	-	5.600E-01	-	8.781E-01	-
3.62E-01	2.013E-01	0.35	4.075E-01	0.65	6.660E-01	0.56
2.31E-01	1.752E-01	0.31	2.882E-01	0.77	4.877E-01	0.69
1.81E-01	1.454E-01	0.76	2.301E-01	0.91	3.974E-01	0.83

3D LGPR *O* 2 ($\tau_1 = 10^{-14}$)

$h(\Omega(t_f))$	$(\omega)_{L_2}$	$O(1/\rho)$	u _{L2}	O(u)	E_{L_2}	O(E)
5.29E-01	2.899E-01	-	2.946E-01	-	5.185E-01	-
3.62E-01	1.426E-01	1.44	1.188E-01	1.85	2.275E-01	1.67
2.31E-01	8.304E-02	1.20	5.829E-02	1.59	1.099E-01	1.62
1.81E-01	5.931E-02	1.37	3.600E-02	1.96	7.206E-02	1.72

Kidder problem (hydrodynamics limit: $\tau_1 = 10^{-14}$)

Sedov problem (hydrodynamics limit: $\tau_1 = 10^{-14}$)

Walter Boscheri

Riemann problems with viscous fluids $(\mu = \frac{1}{6}\rho_0 \tau_1 c_{sh}^2)$

Walter Boscheri

Heat conduction in a gas $(\kappa = \tau_2 \alpha^2 \frac{\theta_0}{\rho_0})$

Collapse of a beryllium shell $(\tau_1 = \tau_{10} (\sigma_Y / \sigma)^n)$

 $V_0 = 417.1$

 $V_0 = 454.7$

 $V_0 = 490.2$

Collapse of a beryllium shell $(\tau_1 = \tau_{10} (\sigma_Y / \sigma)^n)$

2D projectile impact ($\tau_1 = \tau_{10} (\sigma_Y / \sigma)^n$)

Walter Boscheri

3D Taylor bar $(\tau_1 = \tau_{10} (\sigma_Y / \sigma)^n)$

Walter Boscheri

3D Taylor bar $(\tau_1 = \tau_{10} (\sigma_Y / \sigma)^n)$

Elastic vibration of a beryllium plate (ideal elasticity: $\tau_1 = 10^{14}$)

Elastic vibration of a beryllium plate (ideal elasticity: $\tau_1 = 10^{14}$)

Twisting column (ideal elasticity: $\tau_1 = 10^{14}$)

Outline

Introduction and motivation

- 2 The GPR model in Lagrangian formulation
- 3 Cell-centered finite volume scheme on unstructured grids
- 4 Asymptotic analysis of the scheme
- 5 Second order extension in space and time
- 6 Numerical results

Conclusions

Conclusions and Outlook

Conclusions

- a unified model for continuum mechanics in Lagrangian form
- new second order updated Lagrangian finite volume scheme for ideal and viscous heat conducting fluids and elastic and elasto-plastic solids
- solver for stiff relaxation source terms
- Implicit-Explicit (IMEX) scheme with Asymptotic Preserving property
- Geometric Conservation Law compliant discretization
- $\bullet\,$ extended validation and verification test suite on unstructured 2D/3D meshes

Conclusions and Outlook

Outlook

- extension to high order of accuracy in space and time
- usage of curvilinear unstructured meshes
- structure-preserving Lagrangian schemes for involutive PDEs

Thank you!

walter.boscheri@unife.it

W. Boscheri, S. Chiocchetti, I. Peshkov. A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes.

Journal of Computational Physics 451: 110852 (2022).