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Motivation

Semi-Lagrangian schemes are very effective for the treatment of convection
(and drift) terms in kinetic equations.

They are obtained by integrating the equations along characteristics.

Large time steps are possible, therefore improving efficiency

SL scheme may not be not conservatives.

Conservation is very relevant for

long time behaviour of Vlasov-like equations

AP property for BGK-type equation (essential for example for capturing
shocks)

Purpose of the talk:
Analyze loss of conservation for SL scheme, and propose some techniques
that are able to restore conservation.
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BGK model

BGK is a simple model of the Boltzmann transport equation.
f (x , v , t) satisfies

∂t f + v · ▽x f =
1
κ
(M(f )− f ) (1.1)

with local Maxwellian

M(f )(x , v , t) =
ρ(x , t)√

(2πRT (x , t))d
e− |v−U(x,t)|2

2RT (x,t)

d : the dimension in velocity, κ: Knudsen number,
ρ =

∫
Rd f (x , v , t)dv : space density,

ρU =
∫
Rd vf (x , v , t)dv : momentum density,

R: the gas constant, T : temperature,
dρRT (x , t) =

∫
Rd (v − U(x , t))2 f (x , v , t)dv .
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In spite of its simple structure, it is very relevant:
as κ → 0 its moments satisfy compressible Euler
equations ⇒ same fluid dynamic limit of the BTE
with suitable correction (e.g. ES-BGK), it can be
constructed to capture the Navier-Stokes behavior for
small, non zero, Knudsen number
it satisfies an H-theorem
it is much much easier to solve than the full BTE
it can be adopted as a tool of the construction of very
effective schemes for the numerical solution of the BTE
when close (but not too much!) to the fluid dynamic limit
(Jin-Filbet)
can be uses to improve Monte Carlo simulation of BTE
(Pareschi-Di Marco)
· · ·
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Classical Semi-Lagrangian scheme for the BGK model
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Classical Semi-Lagrangian scheme for the BGK model

SL scheme

Semi-Lagrangian schemes (SL) for the convection part + implicit
discretization for the collision part seem natural because:

no CFL restriction on ∆t due to convection

no restriction due to small collision time

We start from the characterstic formulation of the problem

df
dt

=
1
κ
(M(f )− f ),

dx
dt

= v ,

subject to the initial condition: f (x , v ,0) = f0(x , v).
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Classical Semi-Lagrangian scheme for the BGK model

Simple Semi-Lagrangian scheme

Suppose that the computational domain is
[xmin, xmax]× [vmin, vmax]× [0, t f ] ∈ R× R× R+.

Grid points are denoted by:
tn = n∆t ;
xi = xmin + i∆x , i = 0, ...,Nx ;
vj = vmin + j∆v , j = 0, ...,Nv ,

We consider 1D in space and velocity. Let us denote
f n
ij ≈ f (xi , vj , tn).

First order semi-Lagrangian implicit Euler scheme:

f n+1
i,j = f̃ n

i,j +
∆t
κ
(Mn+1

i,j − f n+1
i,j )

where f̃ n
i,j is obtained by linear interpolation from f n

ij .
Sebastiano Boscarino
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Classical Semi-Lagrangian scheme for the BGK model

Simple SL scheme

M. GROPPI, G. RUSSO, AND G. STRACQUADANIO 391

2. Lagrangian formulation and first order scheme

We shall restrict to the BGK equation in one space and velocity dimension (namely
d=N =1 in (1.1), (1.2)). In the Lagrangian formulation, the time evolution of f(x,v,t)
along the characteristic lines is given by the following system:

df

dt
=

1

ε
(M [f ]−f),

dx

dt
=v,

x(0)= x̃, f(x,v,0)=f0(x,v), t≥0, x, v ∈ R.

(2.1)

For simplicity, we assume constant time step ∆t and uniform grid in physical and veloc-
ity space, with mesh spacing ∆x and ∆v, respectively, and denote the grid points
by tn =n∆t, xi =x0 + i∆x, i=0, . . . ,Nx, vj = j∆v, j =−Nv, . . . ,Nv, where Nx +1 and
2Nv +1 are the number of grid nodes in space and velocity, respectively, so that [x0,xNx ]
is the space domain. We also denote the approximate solution f(xi,vj ,t

n) by fn
ij .

Relaxation time ε is typically of the order of the Knudsen number, defined as the ratio
between the molecular mean free path length and a representative macroscopic length;
thus, the Knudsen number can vary in a wide range, from order greater than one (in
rarefied regimes) to very small values (in fluid dynamic regimes).

xi−2 xi−1 xi xi+1x̃i
tn

tn+1
fn+1

ij

f̃n
ij

vj > 0

Fig. 2.1. Representation of the implicit first order scheme. The foot of the characteristic does
not lie on the grid, and some interpolation is needed to compute f̃n

ij .

For this reason, if we want to capture the fluid-dynamic limit, we have to use an L-stable
scheme in time. An implicit first order L-stable semi-Lagrangian scheme (Figure 2.1)
can be achieved in this simple way

fn+1
ij = f̃n

ij +
∆t

ε
(M [f ]n+1

ij −fn+1
ij ). (2.2)

The quantity f̃n
ij≃f(xi−vj∆t,vj ,t

n) can be computed by suitable reconstruction from
{fn

·j}; linear reconstruction will be sufficient for first order scheme, while higher order
reconstructions, such as ENO or WENO [6], may be used to achieve high order avoiding
oscillations. The convergence of this first order scheme has been studied in [24].
M [f ]n+1

ij is the discrete Maxwellian constructed with the macroscopic moments of fn+1:

M [f ]n+1
ij =M [f ](xi,vj ,t

n+1)=
ρn+1

i√
2πRTn+1

i

exp

(
− (vj−un+1

i )2

2RTn+1
i

)
.

Mn+1
i,j is computed imposing it has the same moments of f n+1: multiply by

(1, vj , v2
j ) and use the property that

the moments of Mn+1
ij − f n+1

ij vanish:

(ρn+1
i , ρn+1

i Un+1
i , ρn+1

i En+1
i ) ≈

∑
j

(1, vj , v2
j )f̃

n+1
ij ∆v ,

where f̃ n
i,j ≈ f (xi − vj∆t , vj , tn).
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Classical Semi-Lagrangian scheme for the BGK model

Higher order: Runge-Kutta schemes

Runge-Kutta schemes can be adopted for high order in time.
L-stable schemes provide correct fluid dynamic limit.
Example of RK schemes adopted here:

RK 2 =

α α 0
1 1-α α

1-α α

, RK 3 =

γ γ 0 0
(1 + γ)/2 (1 − γ)/2 γ 0

1 1 − δ − γ δ γ

1 − δ − γ δ γ

where

α = 1 −
√

2
2

, γ = 0.4358665215, δ = −0.644373171.

RK may be expensive due to the high number of interpolations.
Sebastiano Boscarino
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Classical Semi-Lagrangian scheme for the BGK model

High order: BDF schemes

The BDF (Backward Difference Formula) methods allow same
order of accuracy at lower cost.

We use BDF2 and BDF3.
Applying these methods to the Lagrangian formulation of the
BGK model we obtain the following schemes:

f n+1
ij =

4
3

(1)

f n
ij −1

3

(2)

f n−1
ij +

∆t
ϵ
(Mn+1

ij − f n+1
ij ) BDF2

f n+1
ij =

11
18

(1)

f n
ij − 9

11

(2)

f n−1
ij +

2
11

(3)

f n−2
ij +

∆t
ϵ
(Mn+1

ij − f n+1
ij ) BDF3

where
(s)

f n
ij= f n(xi − svj∆t , vj), s = 1,2,3, obtained by

interpolation.
Sebastiano Boscarino
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Classical Semi-Lagrangian scheme for the BGK model

RK2 and BDF2

x̃(1)x̃(2) x̃(3)

xi−2 xi−1

xi

tn

tn + c1∆t

tn+1
fn+1
ij ≡ F

(2,2)
ij

F
(1,1)
ijF

(1,1)
i−1,jF

(1,1)
i−2,j

K
(2,1)
i,j

vj > 0

f̃
(1,n)
ijf̃

(2,n)
ij

2◦ char.

1◦ char.

1

xi−2 xi−1

xi xi+1
tn−1

tn

tn+1
fn+1
ij

vj > 0

f̃n−1,2
ij

f̃n,1
ij

x̃2 x̃1

1

Figure: Left RK2, right BDF2. One has to interpolate in the red circle.

High order in space is obtained by CWENO or by generalized
WENO reconstruction (Carlini, Ferretti, R. 2005).
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Classical Semi-Lagrangian scheme for the BGK model

Conservation of first order scheme - single shock

L1 relative error RK1+Linear+CM
(Nx ,Nv ),CFL = 4 Mass Momentum Energy

(100,30) 3.63e-04 0.0012 0.0021
(100,40) 5.54e-08 3.26e-07 6.03e-07
(100,50) 8.55e-13 7.81e-12 1.43e-11
(100,60) 3.55e-14 4.96e-14 3.89e-14
(100,90) 3.24e-14 4.82e-14 3.77e-14
(200,30) 9.10e-04 0.0030 0.0051
(200,40) 1.15e-07 6.43e-07 1.25e-06
(200,50) 1.78e-12 1.54e-11 2.97e-11
(200,60) 7.45e-14 8.24e-14 7.23e-14
(200,90) 7.16e-14 7.32e-14 7.45e-14

Table: Kn = 10−6, Conservation error of discrete moments for single
shock with velocity domain [−20,20].
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Classical Semi-Lagrangian scheme for the BGK model

Remark 2.1

The error is small, but prevents construction of AP schemes for
Euler equations, since it does not satisfy conservation.

What is the source of error in the first order scheme and how
can we fix it?

Effect of continuous Maxwellian
Strong dependence on Nv : the use of continuous Maxwellian.
In the classical Maxwellian the parameters ρ, U, and T are related to
M by integration, while numerically they are obtained by discrete
summation.
The quadrature formulas are spectrally accurate, therefore when the
Maxwellian is fully resolved one obtains high accuracy.
Possible solution: use discrete Maxwellian (DM) [Mieussens, 2000]
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Classical Semi-Lagrangian scheme for the BGK model

Remark 2.1

The error is small, but prevents construction of AP schemes for
Euler equations, since it does not satisfy conservation.

What is the source of error in the first order scheme and how
can we fix it?

Effect of continuous Maxwellian
Strong dependence on Nv : the use of continuous Maxwellian.
In the classical Maxwellian the parameters ρ, U, and T are related to
M by integration, while numerically they are obtained by discrete
summation.
The quadrature formulas are spectrally accurate, therefore when the
Maxwellian is fully resolved one obtains high accuracy.
Possible solution: use discrete Maxwellian (DM) [Mieussens, 2000]
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Classical Semi-Lagrangian scheme for the BGK model

Conservation of high order schemes: RK3
L1 relative error Classical RK3+W35+CM

(Nx ,Nv ),CFL = 2 Mass Momentum Energy
(100, 42) 1.28e-03 1.25e-02 1.41e-02
(100, 50) 1.06e-03 1.31e-02 1.47e-02
(100, 60) 1.43e-03 1.26e-02 1.49e-02
(100, 90) 1.35e-03 1.28e-02 1.48e-02
(200, 42) 1.54e-03 1.30e-02 1.45e-02
(200, 50) 1.30e-03 1.35e-02 1.51e-02
(200, 60) 1.68e-03 1.30e-02 1.53e-02
(200, 90) 1.60e-03 1.32e-02 1.53e-02
(400, 42) 1.68e-03 1.32e-02 1.47e-02
(400, 50) 1.42e-03 1.36e-02 1.53e-02
(400, 60) 1.80e-03 1.32e-02 1.55e-02
(400, 90) 1.73e-03 1.34e-02 1.54e-02
(800, 60) 1.86e-03 1.33e-02 1.55e-02
(800, 90) 1.80e-03 1.34e-02 1.55e-02

Table: κ = 10−6, Conservation error of discrete moments for single
shock problem with velocity domain [−20,20].
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Classical Semi-Lagrangian scheme for the BGK model

Conservation of high order schemes: BDF3
L1 relative error Classical BDF3+W35+CM

(Nx ,Nv ),CFL = 2 Mass Momentum Energy
(100, 42) 1.73e-03 1.03e-02 1.39e-02
(100, 50) 1.58e-03 1.04e-02 1.38e-02
(100, 60) 1.73e-03 1.00e-02 1.38e-02
(100, 90) 1.75e-03 1.03e-02 1.40e-02
(200, 42) 2.02e-03 1.10e-02 1.46e-02
(200, 50) 1.88e-03 1.11e-02 1.45e-02
(200, 60) 2.01e-03 1.07e-02 1.44e-02
(200, 90) 2.03e-03 1.10e-02 1.46e-02
(400, 42) 2.18e-03 1.14e-02 1.49e-02
(400, 50) 2.05e-03 1.15e-02 1.48e-02
(400, 60) 2.16e-03 1.11e-02 1.47e-02
(400, 90) 2.19e-03 1.14e-02 1.49e-02
(800, 60) 2.24e-03 1.13e-02 1.49e-02
(800, 90) 2.27e-03 1.16e-02 1.51e-02

Table: κ = 10−6, Conservation error of discrete moments for single
shock problem with velocity domain [−20,20].
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Classical Semi-Lagrangian scheme for the BGK model

Why do high order schemes have much larger conservation
errors than first order ones?
Main qualitative difference: in the first order scheme the
interpolation weights are the same for all intervals.
In high order non-oscillatory reconstruction, the interpolation
weights depend on the local regularity!

Accuracy in space is obtained by high order reconstruction.
Several techniques can be adopted to obtain high order, still
avoiding spurious oscillations. They all destroy translation
invariance.
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Classical Semi-Lagrangian scheme for the BGK model

Why do high order schemes have much larger conservation
errors than first order ones?
Main qualitative difference: in the first order scheme the
interpolation weights are the same for all intervals.
In high order non-oscillatory reconstruction, the interpolation
weights depend on the local regularity!

Accuracy in space is obtained by high order reconstruction.
Several techniques can be adopted to obtain high order, still
avoiding spurious oscillations. They all destroy translation
invariance.
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Classical Semi-Lagrangian scheme for the BGK model

Lack of conservation of higher order schemes

In the various reconstructions:

schemes with linear weights are high order, conservative, but do
not prevent oscillations

schemes with non-linear weights (limiters switched on):
non-oscillatory but conservation is lost.

Two strategies to restore conservation in SL schemes:

Conservative correction (S.B. et all, Commun. Comput. Phys.
Vol 29. No 1, pp 1-56, 2021)

Conservative SL reconstruction

First approach has been used to construct conservative schemes.
However it presents stability problems, severe CFL restriction.
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Classical Semi-Lagrangian scheme for the BGK model

Conservative correction (first order)

Strategy:
1) We use the discrete Maxwellian, introduced by Mieussens (2000).
2) Conservative correction procedure.
Based on writing v∂x f

∣∣
x=xi

=
(

F̂i+1/2 − F̂i−1/2

)
/∆x

Representation of the first order scheme.
Black circles: grid nodes, grey circles: interpolation is needed.
Flux values at cell edges are reconstructed from the values at the center
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Conservation error in Sod problem

L1 relative error BDF3
(Nx = 1000,Nv = 30,CFL = 2) Mass Momentum Energy
Conservative BDF3+W35+DM 1.57e-13 1.06e-13 3.68e-12

BDF3+W35+DM 3.44e-04 0.0020 0.0010

Table: Kn = 10−6, Conservation error of discrete moments for Sod
test.

Remark Compared to the non-conservative SL schemes, scheme
based on conservative correction has severe CFL restriction.
In some cases BDF2 and BDF3 require CFL less than 0.45 and 0.35.
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Conservative reconstruction
New conserv. recon., ⇒ conservative SL scheme with no CFL
restrictions.

Example Assume we know cell averages ūi of a piecewise smooth
function u(x).
Let ui(x) be its conservative polynomial reconstruction in interval Ii
(e.g.CWENO). For a parabola we have:

ui(x) = ui + u′
i (x − xi) +

1
2

u′′
i (x − xi)

2

with ui ,u′
i ,u

′′
i suitable approximation of the pointwise value of u and

its derivatives at cell center.
We want to compute a conservative cell average centered at
xi+θ := xi + θ∆x , θ ∈ [0,1).
Cho, S. Y., Boscarino, S., Russo, G., Yun, S. B. (2021). Conservative semi-Lagrangian

schemes for kinetic equations Part I: Reconstruction. Journal of Computational

Physics.Sebastiano Boscarino
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Generalizing. Given point-wise values ui on grid points xi ,
compute a conservative polynomial reconstruction for each cell
Ii = [xi −∆x/2, xi +∆x/2]:

Ri(x) =
k∑

ℓ=0

R(ℓ)

ℓ!
(x − xi)

ℓ

where Rℓ
i is the approximation of the ℓ-th derivative of u, u(ℓ)(xi)

This yields a conservative reconstruction on the spatial domain
R(x) =

∑
i Ri(x)χi(x).

For any θ ∈ [0,1) approximate ū(xi + θ∆x) ≈ Q(xi + θ∆x) := 0
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We integrate in the interval [yi− 1
2
, yi+ 1

2
] = [xi+(θ−1/2)∆x , xi+(θ+1/2)∆x ]

whose center is xi+θ∆x .

ū(xj+θ) ≈ Q(xj+θ)

Q(xj+θ) =
1
∆x

∫ xi+θ+1/2

xi+θ−1/2

Ri(x)dx

Q(xj+θ) =
1
∆x

∫ xi+1/2

xi+θ−1/2

Ri(x)dx +
1
∆x

∫ xi+1/2+θ

xi+1/2

Ri(x)dx

Sebastiano Boscarino
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Representation
Integrating from yi−1/2 to yi+1/2 one obtains

Qj+θ =
1
∆x

∫ y
j+ 1

2

y
j− 1

2

uj(x)dx = (1 − θ)uj + θuj+1 +
θ(1 − θ)

2
(u′

j − u′
j+1)∆x

+
1
24

(
(1 − q(θ))u′′

j + q(θ)u′′
j+1

)
(∆x)2

where q(θ) := 3θ − 6θ2 + 4θ3.
Such formulas can be generalized to arbitrary order:

Qi+θ :=
k∑

ℓ=0

(∆x)ℓ
(
αℓ(θ)R

(ℓ)

i + βℓ(θ)R
(ℓ)

i+1

)
,

where R(ℓ)

i is the non oscillatory reconstruction of dℓu(xi)/dxℓ, and

αℓ(θ) =
1 − (2θ − 1)ℓ+1

2ℓ+1(ℓ+ 1)!
, βℓ(θ) =

(2θ − 1)ℓ+1 − (−1)ℓ+1

2ℓ+1(ℓ+ 1)!
.

Then Qi+θ denotes the approximation of ū(x) on x = xj + θ∆x .
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The approximation is non-oscillatory by construction.
For periodic BC one has∑

i Qi+θ is independent of θ, ⇒ All (global) moments are
conserved.
The same reconstruction from cell averages to cell
averages can be used in the framework of finite difference
to go from point-wise values to point-wise values (C.W.
Shu).
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Comparison of conservation error of discrete moments

Conservation error of discrete moments

L1 relative error RK3+W35+DM
(Nx ,Nv ) Mass Momentum Energy
(160,24) 2.09e-07 7.77e-05 9.00e-07
(640,24) 2.04e-12 1.03e-09 9.43e-12
(640,60) 2.19e-12 9.90e-10 8.96e-12

Table: Kn = 10−0, Conservation error of discrete moments for Test 1

L1 relative error RK3+ Cons.Recon.+DM
(Nx ,Nv ) Mass Momentum Energy
(160,24) 8.88e-15 5.54e-13 8.85e-15
(640,24) 4.29e-14 4.54e-12 3.81e-14
(640,60) 3.50e-14 4.92e-12 4.43e-14

Table: Kn = 10−0, Conservation error of discrete moments for Test 1
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Comparison of schemes

L1 relative error BDF3
(Nx = 1000,Nv = 30,CFL = 2) Mass Momentum Energy
Conservative BDF3+W35+DM 1.57e-13 1.06e-13 3.68e-12

BDF3+New+DM 8.51e-13 5.14e-13 2.97e-12
BDF3+W35+DM 3.44e-04 0.0020 0.0010

Table: Kn = 10−6, Conservation error of discrete moments for Test 3.
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Comparison of schemes

Remark 4.1

1 This scheme is conservative even with small number of spatial
grids

2 The conservative reconstruction can be extended to more
dimensions

3 Applications to the Vlasov-Poisson system and the BGK model
of rarefied gas dynamics:
Cho, S. Y., Boscarino, S., Russo, G., Yun, S. B. (2021). Conservative
semi-Lagrangian schemes for kinetic equations Part II: Applications. Journal of
Computational Physics.

4 As in the case of the non-conservative Semi-Lagrangian
schemes, we can use CFL > 4 for various Knudsen numbers.
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Vlasov-Poisson equation

∂f
∂t

+ v · ∇xf + E(x, t) · ∇vf = 0, (5.1)

and
E(x, t) = −∇xϕ(x, t), −∆xϕ(x, t) = ρ(x, t)− m, (5.2)

f (x, v, t): the electron number density in phase space, E: electric field, ϕ:
self-consistent electrostatic potential.
Charge density, ρ(t , x) =

∫
Rdv f (x, v, t)dv, dv : dimension in v.

m the ion charge density assumed to be uniformly distributed on the
background. 1-D in x and 1-D in v. Periodic BC in x , zero BC at v -boundary.
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Conserved quantities
1 Maximum principle:

0 ≤ f (x , v , t) ≤ M, ∀t > 0, provided 0 ≤ f0(x , v) ≤ M.

2 Conservation of total mass:
d
dt

∫
Rdv

∫
Rdx

f (x , v , t)dxdv = 0.

3 Conservation Lp norm 1 ≤ p < ∞:

∥f∥p =

(∫ dv

R

∫
Rdx |f (x , v , t)|pdxdv

) 1
p

.

4 Conservation of energy:

Energy =

∫
Rdv

∫
Rdx

f (x , v , t)
|v |2

2
dxdv +

∫
Rdx

E2(x , t)
2

dx , (5.3)

5 Conservation entropy:

Entropy =

∫
Rdv

∫
Rdx

f log (f ) dxdv . (5.4)
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Characteristic formulation
Semi Lagrangian methods for VP system





dX
dt

(t ; x , v , tn+1) = V (t ; x , v , tn+1),

dV
dt

(t ; x , v , tn+1) = E(t ,X (t ; x , v , tn+1))
(5.5)

with (X (t ; x , v , tn+1),V (t ; x , v , tn+1)) a characteristic curve which
takes the value (x , v) at time tn+1. Since the distribution function of
the VP system is constant along the particle trajectories, we have

f (x , v , tn+1) = f (X (t ; x , v , tn+1),V (t ; x , v , tn+1)). (5.6)

To update the solution in this way one has to perform a shift in both
space and velocity. By adopting a splitting approach, a combination
of separate shifts in the x and v direction is performed.
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Operator splitting is adopted to obtain high order accuracy in time,
and the conservative reconstruction that preserves the maximum and
minimum of the function is used.
Splitting methods are besed solving separately:

∂f
∂t

+ v · ∇xf = 0 trasport in space

∂f
∂t

+ E(x, t) · ∇vf = 0, drift in velocity

each equation can be solved along the characteristics.
1 transport step over a time step τ > 0:

f (x , v , t + τ) = etT f (x , v , t) = f (x − vτ, v , t)
2 Drift step over a time step τ > 0:

f (x , v , t + τ) = etU f (x , v , t) = f (x − vE(x , t)τ, v , t)

where we denoted by etT and etU respectively the operators
representing a shift along the x-axis, and a shift along then v -axis.
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1D Long time simulation

Time invariants: Lp-norms of the solution total energy and entropy,
that should remain constant in time.
We consider two benchmark problems with the following initial data:

f (x , v ,0) =
1√
2π

(
1 + α cos(kx)

)
exp

(
−v2

2

)
,

where we use (α, k) = (0.01,0.5) for weak Landau damping, and
(α, k) = (0.5,0.5) for strong Landau damping.
For both problems, we impose periodic boundary condition on the
physical domain [−2π,2π] and zero-boundary condition on velocity
domain [−2π,2π]. Numerical solutions are computed up to final time
tf = 60 with a time step determined by CFL= 6. The grid size is
Nx = 64 and Nv = 128.
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Weak Landau damping in the 1D Vlasov Poisson. Nx = 64, Nv = 128
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Strong Landau damping in the 1D Vlasov Poisson. Nx = 64, Nv = 128.
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The Boltzmann equation for inert gas mixtures.

Outline

1 Introduction

2 • Semi-Lagrangian schemes
Classical Semi-Lagrangian scheme for the BGK model

3 Numerical tests

4 Conservative Semi-Lagrangian schemes

5 Vlasov-Poisson system

6 Application to mixtures
The Boltzmann equation for inert gas mixtures.
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The Boltzmann equation for inert gas mixtures.

Boltzman equation for inert gas mixtures
The distribution functions of L-species inert gases:

{fs(x , v, t), s = 1, · · · , L}
defined on (x , v) ∈ R3 × R3 at time t > 0.
Boltzmann-type equations for inert gas mixtures:

∂fs
∂t

+ v · ∇x fs = Qs, s = 1, · · · , L,

where the collision operator Qs for s-species gas is

Qs =
L∑

k=1

Qsk (fs, fk ).

The binary collision operator Qsk is defined by

Qsk (fs, fk ) =
∫
R3×S2

dw dω gsk (|y |, ŷ · ω)
[
fs(v′)fk (w′)− fs(v)fk (w)

]
,

where gsk is a collision kernel.
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The Boltzmann equation for inert gas mixtures.

In S.B. S-Y- Cho, M. Groppi, G. Russo BGK Models for inert mixtures:
comparison and applications, Kinetic and Related Models, 2021
The authors briefly recall the three different BGK models for Boltzman
equation for inert gas mixtures which have been compared in their
kinetic behaviour and then versus the hydrodynamic limits.

The BGK model of Andries, Aoki and Perthame (AAP model);

The BGK model preserving global conservations (GS model) by
M. Bisi, M. Groppi and G. Spiga;

A general consistent BGK model for inert gas mixtures (BBGSP
model) by A. V. Bobylev, M. Bisi, M. Groppi, G. Spiga and I. F.
Potapenko)

Here we used a conservative semi-Lagrangian method. For the time
discretization, we consider an implicit Runge-Kutta method (DIRK)
and a backward difference formula (BDF).
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The Boltzmann equation for inert gas mixtures.

In S.B. S-Y- Cho, M. Groppi, G. Russo Conservative
Semi-Lagrangian Schemes for a general consistent BGK model
for inert gas mixtures, Commun. Math. Sci. 2022
High order conservative semi-Lagrangian scheme fulfills
indifferentiability principle and Asymptotic Preserving (AP)
property which allows to capture the behavior of hydrodynamic
limit models.
Indifferentiability Principle: The sum of distribution function
f =

∑L
s=1 fs obeys the single gas Boltzmann equation if all ms

and collision kernel gsk are identical.
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The Boltzmann equation for inert gas mixtures.

Indifferentiability principle

BDF3-QCWENO35 for ε = 10−2
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The Boltzmann equation for inert gas mixtures.

Local Velocity

S.B. S.-Y- Cho, G. Russo A local velocity grid conservative
semi-Lagrangian schemes for BGK model, J. Comput. Phys. 2022
In this paper, we propose a velocity adaptation technique in the
semi-Lagrangian framework for BGK model. The velocity grid will be
set locally in time and space, according to mean velocity and
temperature.
Motivation:

When dealing with high Mach number problems, where large
variation of mean velocity and temperature are present in the
domain under consideration, the computational cost and
memory allocation requirements become prohibitively large.

Simply applying a local velocity grid approach to the SL
schemes may not be conservative.
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The Boltzmann equation for inert gas mixtures.

Two interacting blast waves
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Figure: Two interacting blast waves. For BDF2+MM scheme we use Nv = 3800 for
each spatial node, while for a local velocity grid approaches we take an average of
Nv = 45. We take ε = τ := CTω/ρ with C = 1.08 × 10−9 as used in [Brull, 2014]1.

1
Brull, S., Mieussens, L. (2014). Local discrete velocity grids for deterministic rarefied flow simulations. Journal

of Computational Physics, 266, 22-46
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The Boltzmann equation for inert gas mixtures.

Conclusions

SL schemes with implicit treatment of collision seem suitable to solve
BGK.

Large time steps can be used, independently on the Knudsen number.

Conservation is important if we want to have AP schemes for the fluid
dynamic limit.

Two strategies are proposed: conservative correction and conservative
SL reconstruction

Fluid dynamic limit is captured with relatively small number of points in
velocity.

The technique can be adopted to construct conservative SL schemes
for the BGK equation, Vlasov-Poisson and other transport equations
with similar structure, obtaining better conservation properties.
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The Boltzmann equation for inert gas mixtures.
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