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Introduction and motivations



Introduction and motivations

Biological networks have been under scientific investigation for long time.

We see immediate application in blood vasculature 1 and leaf venation.

Regarding leafs networks, the pattern of their venations seems to

influence functionalities of the plant, such as its longevity, optimal water

distribution and also the cells that are engaged in photosynthesis.

Figure 1: Leaf venation (left), blood vasculature (right).

1Hu, Cai and Rangan, Blood vessel adaptation with fluctuations in capillary flow

distribution
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We study the formation of network structures in biological systems. We

consider a fluid moving through a porous medium, that is described by a

Darcy’s law for the pressure, which influences the movement of the fluid both

in direction and intensity. The flux of the fluid is governed by the so-called

permeability tensor C, and vector m, whose action on the gradient of the

pressure gives the direction of the flux. The permeability tensor usually

depends on the conductivity of the medium, which describes how easy it is for

the fluid to move in a point and what is the best direction to do so.

We study a continuous model which takes into consideration the evolution of

the permeability tensor as a formal L2-gradient flow of an energy functional,

consisting of a diffusion term, a metabolic and a kinetic term.

About numerical schemes, we can find different papers:

• FD m-model: Di Fang, Shi Jin, P. Markowich and B. Perthame, 2019

• FEM m-model: G. Albi, M. Burger, J. Haskovec, P. Markowich, M.

Schlottbom, 2017

• FEM m-model: G. Albi, M. Artina, M. Foransier and P. Markowich, 2016
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Describing leaf venation phenomenon is very challenging because of the

nature of the problem. Even in the same plant we can find different leafs

with different venations patterns 2.

It becomes hard to compare numerical results when the features are very

detailed. If the scales are not well solved, we can find differences when

changing the parameters.

Figure 2: Multiscale patterns.

2Adaptation and optimization of biological transport networks, Hu Dan and Cai

David, Physical review letters, 2013
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Cai-Hu model 4,5 - tensor C-model

We refer to the Cai-Hu model to describe the formation of biological

transport network.

−∇ · ((rI+ C)∇p) = S (1)

∂C
∂t

− D2∆C− c2∇p ⊗∇p +
M ′(C)
|C|

C = 0 (2)

• p = p(t, x⃗) ∈ R scalar pressure =⇒ pumping term

• C = C(t, x⃗) ∈ R2×2 conductance (permeability) tensor

The diffusion coefficient D controls the random effects, c is an activation

parameter, r is the isotropic background permeability of the medium3

and S = S(x⃗) the source function.

3Haskovec, Markowich, and Perthame. Mathematical analysis of a pde system for

biological network formation, 2016.
4Adaptation and optimization of biological transport networks, Hu and Cai, 2013
5An optimization principle for initiation and adaptation of biological transport

networks, Hu and Cai, 2019
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The expression we choose for the metabolic function is

M(|C|) := α

γ
|C|γ =⇒ M ′(|C|) = α|C|γ−2 (3)

as in 6,7, where γ is the relaxation exponent and for leaf venation

1/2 < γ < 18.

It represents the material cost of an edge of the network and it is

proportional to a power of the conductance C of the edge, under the

assumption that the total material cost of the network is constant.

At the end the model is

−∇ · ((rI+ C)∇p) = S (4)

∂C
∂t

− D2∆C− c2∇p ⊗∇p + α|C|γ−2C = 0 (5)

6Biological transportation networks: Modeling and simulation, Albi G., Artina M.,

Foransier M. and Markowich P., Analysis and Applications, 2016
7Haskovec J., Markowich P. and Pilli G., Tensor PDE model of biological network

formation, Communications in Mathematical Sciences, 2022
8Adaptation and optimization of biological transport networks, Hu Dan and Cai

David, Physical review letters, 2013
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The Cai-Hu model refers to a global energy consumption in the sense that the

equations derive from the L2-gradient flow of the functional

Etens[C] :=
∫
Ω

D2

2
|∇C|2 + c2∇p[C] · P[C]∇p[C] +M(|C|) dΩ. (6)

In9 they make sure that the derivative in time of the energy functional is

negative, thus the system reaches a steady state, as a minimal energy

consumption.

To obtain the vector model for m, we consider the following energy functional:

(ansatz) C := m⊗m =⇒ |C| = |m|2

Evect[m] :=

∫
Ω

D2|∇m|2 + c2∇p[m] · P[m ⊗m]∇p[m] +M(|m|2)dx . (7)

9Haskovec J., Markowich P. and Perthame B., Mathematical Analysis of a PDE

System for Biological Network Formation, 2016
Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 6 / 34



The Cai-Hu model refers to a global energy consumption in the sense that the

equations derive from the L2-gradient flow of the functional

Etens[C] :=
∫
Ω

D2

2
|∇C|2 + c2∇p[C] · P[C]∇p[C] +M(|C|) dΩ. (6)

In9 they make sure that the derivative in time of the energy functional is

negative, thus the system reaches a steady state, as a minimal energy

consumption.

To obtain the vector model for m, we consider the following energy functional:

(ansatz) C := m⊗m =⇒ |C| = |m|2

Evect[m] :=

∫
Ω

D2|∇m|2 + c2∇p[m] · P[m ⊗m]∇p[m] +M(|m|2)dx . (7)

9Haskovec J., Markowich P. and Perthame B., Mathematical Analysis of a PDE

System for Biological Network Formation, 2016
Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 6 / 34



Vector m-model

Taking the L2-gradient flow with respect to the vector variable m of

Evect[m]

−∇ · ((rI+m ⊗m)∇p) = S (8)

∂m

∂t
− D2∆m − c2(∇p ⊗∇p)m + α|m|2(γ−1)m = 0. (9)

Remark: The metabolic term α|C|γ−2C becomes singular at C = 0 if

(and only if) γ < 1. This obviously causes difficulties for the C-model 10.

We are on a bounded domain Ω ⊂ R2 with boundary conditions in ∂Ω:

m(t, x⃗) = 0, C(t, x⃗) = 0, P∇p(t, x⃗) · ν = 0, x⃗ ∈ ∂Ω, t ≥ 0

where ν is the outgoing normal vector to ∂Ω.

10Tensor PDE model of biological network formation, J. Haskovec, P. Markowich, G.

Pilli, Communications in Mathematical Sciences
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Numerical schemes



Space discretization

The domain is Ω = [0, 1]× [0, 1], that we discretize by a uniform Cartesian

mesh with spatial step h := ∆x = ∆y . The variables conductivity and pressure

are Cij ≈ C(xi , yj) and pij ≈ p(xi , yj).

In order to obtain second order accuracy in space, we use central difference for

the computation of the space derivatives:

∂m(1)

∂t
= D2Lm(1) + c2 (Dxp)

2 m(1) + c2DxpDyp m
(2) − α|m|2(γ−1)m(1)

∂m(2)

∂t
= D2Lm(2) + c2 (Dyp)

2 m(2) + c2DxpDyp m
(1) − α|m|2(γ−1)m(2)

∂C (1,1)

∂t
= D2LC (1,1) + c2 (Dxp)

2 − α|C|γ−2C (1,1) (10)

∂C (1,2)

∂t
= D2LC (1,2) + c2DxpDyp − α|C|γ−2C (1,2) (11)

∂C (2,2)

∂t
= D2LC (2,2) + c2 (Dyp)

2 − α|C|γ−2C (2,2) (12)

where C(1,2) = C(2,1) (C is symmetric).
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stabilization parameter for the reaction term

We introduce a ’small’ parameter ε in the reaction term11, as follows

Q(C)C = |C+ ε|γ−2C (13)

and we study the behaviour of the system for ε → 0.

Figure 3: On the left we have ε = 10−2, center ε = 10−3 and right ε = 10−4.

11C. A., D. Boffi, J. Haskovec, P. Markowich and G. Russo, Comparison of two

aspects of a PDE model for biological network formation, Mathematical and

Computational Applications, 2022
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Time discretization - symmetric-ADI method

· · · we apply the symmetric-ADI method for the reaction-diffusion eq.

1st
{

(y − impl) C̃1 = Cn + ∆t
2
Ly C̃1 +

∆t
2
LxCn +∆t Pn+1/2

(x− impl) Cn+1
y = C̃y +

∆t
2
Ly C̃1 +

∆t
2
LxCn+1

y +∆tQ
(
Cn+1

y

)
2nd

{
(x− impl) C̃2 = Cn + ∆t

2
LyCn + ∆t

2
Lx C̃2 +∆t Pn+1/2

(y − impl) Cn+1
x = C̃x +

∆t
2
LyCn+1

x + ∆t
2
Lx C̃2 +∆tQ

(
Cn+1

x

)
Cn+1 =

1

2
Cn+1

x +
1

2
Cn+1

y

where Lα, with α = x , y , are the discrete operators for the Laplacian in x and

y direction respectively, with Lα ∈ RN×N .

ADI sym-ADI

asymm(C) 0.1010 0.0031

asymm(p) 0.0248 0.0055

Table 1: r = 10−3, ε = r .

ADI sym-ADI

asymm(C) 0.1199 0.0538

asymm(p) 0.0307 0.0021

Table 2: r = 10−4, ε = r .
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Accuracy tests



Accuracy tests: Richardson extrapolation

N error2 order

20 - -

40 0.036012 -

80 0.0493010 -0.4531

160 0.01456192 1.7594

320 0.00691103 1.0752

640 0.001528055 2.1772

N error2 order

25 - -

50 9.066× 10−2 -

100 4.625× 10−2 0.97

200 1.571× 10−2 1.56

400 4.149× 10−3 1.92

800 7.347× 10−4 2.50

Table 3: Accuracy test of the m-system (left) and C-system (right):

α = 0.5, c = 1, D = 0.01, γ = 0.75, r = 0.1, tfin = 1.

12

12C. A., D. Boffi, J. Haskovec, P. Markowich and G. Russo, Comparison of two

aspects of a PDE model for biological network formation, Mathematical and

Computational Applications, 2022
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Accuracy tests: Wasserstein distance

The Wasserstein distance13 of order p = 2 between µ and ν ∈ X metric space,

where Π(µ, ν) denotes the collection of all measures

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
d(x , x0)

p dπ(x)

)1/p

,

∫
X

d(x , x0)
pdµ(x) < ∞

Figure 4: ’Vertical’ vs ’horizontal’ distances between a pair of functions:

Wasserstein distance depends more on the displacement of the function than

its shape.

14

13The Wasserstein distances, Villani, 2009
14Euclidean, metric, and Wasserstein gradient flows: an overview, Santambrogio, 2017
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Table 4: Wasserstein distance, errorW vs Richardson extrapolation, errorR:

(left) r = 10−2 and (right) r = 10−3, at final time t = 3.

N errorW errorR

100 - -

200 3.846e-03 3.358e-01

400 9.579e-04 2.763e-01

800 1.8060e-04 2.199e-01

N errorW errorR

100 - -

200 4.827e-03 3.273e-02

400 1.514e-03 3.292e-02

800 4.455e-04 2.609e-02

15

15A. C., Boffi, D. Haskovec, J. Markowich, P. and Russo, G., Asymmetry and condition

number of an elliptic-parabolic system for biological network formation, 2023, arXiv
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Validation I/II

m0,1
1 = 1, m0,1

2 =
√
2; m0,2

1 = 5, m0,2
2 = 5;

m0,3
1 = (2− |X + Y |) exp (−10|X − Y |), m0,3

2 = m0,3
1 ;

16

Figure 5: Difference between two different solutions choosing, as initial

condition, m0,1,m0,2 (on the left) and m0,1,m0,3 (on the right), with

γ = 1.75 > 1.

16Haskovec, Markowich, and Perthame. Mathematical analysis of a pde system for

biological network formation, 2016.
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Validation II/II

Figure 6: In this figure we show the steady states when γ = 0.75 < 1. On the

left the initial condition is m0 = m0,1 = 1 while, on the right, the initial

condition is a function of space, m0 = m0,3.

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 15 / 34



Results



Results

m0
comp(x⃗) = [1, 1]T , C0

comp(x⃗) = [1, 0, 1]T , S(x⃗) = E − Ē

E = exp(−σ(x⃗ − x⃗0)
2), Ē = mean(E ), σ = 500, x⃗0 = (0.25, 0.25)

α = γ = 0.75, c = 5,D = 0.01, ε = 10−3, r = 0.005,T = 15

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 16 / 34



Tests on varying the diffusivity D

α = γ = 0.75, c = 5, ε = 10−3, r = 10−3,T = 15

Figure 7: D = 0.05 (left), D = 0.01 (center) and D = 0.001 (right).

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 17 / 34



Tests varying the relaxation exponent γ

α = γ = 0.75, c = 5, ε = 10−3, r = 10−3,T = 15

Figure 8: γ = 0.95 (left), γ = 0.75 (center), γ = 0.55 (right).
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Evolution in time of the solution

https://youtu.be/ENScpqNaTZU

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 19 / 34
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Asymmetry and condition

number and their dependence on

the background permeability r



Asymmetry and condition number

In this section we compare the two versions of the ADI method to see the

improvements in the symmetric version. We adopt a symmetric numerical

scheme, and we choose symmetric initial datum and source function S .

Consequently, the exact solution to the problem retains symmetry at each

time step.

In order to check if our scheme is symmetric, we calculate the asymmetry

of the solution with the following formula

asymm(A) =
||A− AT ||
||A+ AT ||

r = 10−2 r = 10−3 r = 10−4

ADI sym-ADI ADI sym-ADI ADI sym-ADI

asymm(C) 6.10e-04 4.39e-08 2.59e-02 1.67e-03 1.53e-01 1.86e-01

asymm(p) 3.88e-05 4.28e-09 6.13e-02 2.68e-03 2.68e-02 2.80e-02
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Moreover, investigating the reasons why we lose the symmetry of the

solution, we notice that it is related to the choice of the background

permeability17 r . When this parameters tends to zero, the condition

number of the iteration matrix L increases, up to the order 108.

Figure 9: Asymmetry of the module of the conductivity tensor C and the

pressure p, as functions of time, together with the condition number of L, for
different values of r = 10−1, 10−2, 10−3.

17A. C., Boffi, D. Haskovec, J. Markowich, P. and Russo, G., Asymmetry and condition

number of an elliptic-parabolic system for biological network formation, 2023, arXiv
Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 21 / 34



changing r and constant initial condition
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changing r and space dependent initial condition
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0-initial condition and 0-diffusivity

Figure 10: In (a) and (c) the IC = 1, while in (b) and (d) we IC = 0. In plots

(a) and (b) the diffusion coefficient is D = 10−2, in (c) and (d) D = 0.

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 24 / 34



Graph generation



Number of branches changing the activation parameter c

Figure 11: Plot of |C|. Results for different values of c, γ = 0.75.
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graph derived from the numerical solution

with python library sknw, starting from the numerical solution:

• log of the solution

• choosing an ’ad hoc’ threshold (> 0) for the test

• log for the second time, to compress the solution and isolate the

pixels with high intensity (close to 1)

• binary solution

• skeleton

• graph

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 26 / 34



Figure 12: Segmentation for c = 7, γ = 0.75.
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Figure 13: Segmentation for c = 9, γ = 0.75.

Clarissa Astuto Finite-difference scheme for a tensor PDE model of biological network formation and applications 28 / 34



Figure 14: Segmentation for c = 11, γ = 0.75.
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Figure 15: Segmentation for c = 13, γ = 0.75.
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multiscale challenge: are r = ε = 10−3 small enough?

Figure 16: c = 11, γ = 0.65.
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Future work and Conclusions

√
comparison between vector and tensor model

√
second order scheme in space and time with Wasserstein distance

when r → 0

√
asymmetry related to the conditioning of the elliptic operator

√
graph generation, starting from the numerical solutions of the system

? efficient parallel solver to obtain very detailed solutions (working in

progress with A. Coco)

? clustering (to find out to which plant the leaf belongs)
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clustering ?

Figure 17: Plot of |C| for different values of γ.
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Future work

? leaf venation has a large number of closed loops, which are functional

and able to transport fluid in the event of damage to any vein, including

the primary veins
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Thank you for the attention
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